论文学习笔记 - Classifification of Hyperspectral and LiDAR Data Using Coupled CNNs
Classifification of Hyperspectral and LiDAR Data Using Coupled CNNs
来源:IEEE TGRS 2020
Abstract
本篇论文的主要工作就是基于信息融合的分类任务。
在这篇论文中,作者通过使用两个耦合的CNN,提出一种融合高光谱和LiDAR数据的框架。设计一个CNN从高光谱数据中了解光谱空间特征,另一个则用于捕获来自LiDAR数据。它们都由三个卷积层组成,最后两个卷积层通过参数共享策略。在融合阶段,特征级融合和决策级融合方法同时用于集成这些充足的异质特征。对于特征级融合,评估了三种不同的融合策略,包括串联策略,最大化策略和求和策略。对于决策级融合,加权采用求和策略,确定权重通过每个输出的分类精度。
提出的模型根据在美国休斯顿获得的城市数据集进行评估,还有在意大利Trento农村地区捕获的数据。在休斯顿数据中,作者的模型可以达到新记录,整体精度为96.03%。在Trento数据上,其总体精度为99.12%。这些结果充分证明了作者提出的模型的有效性。
INTRODUCTION
文中模型的数据源是两幅异质图像——高光谱图像(HSI)和激光雷达(LiDAR)图像。
HSI图像相比MSI具有更丰富的光谱信息,但是对于同一材质的物体区分性较弱,他们具有相似的光谱回应。不同于HSI,LiDAR可以记录物体的海拔信息,能够为HSI提供补充,二者优势互补。
例如:区域中的楼房和道路由同样的混凝土结构组成,HSI图像很难区分二者之间的差别,但是LiDAR图像则可以准确区分出楼房和道路,因为他们有不同的高度。相反,LiDAR无法区分两条用不同材料(沥青和混凝土)组成的道路,而可以用HSI。因此,融合高光谱和LiDAR数据是一种很有前途的方案,其性能已经得到了验证。
METHODOLOGY

作者提出的模型主要包括两个网络:用于光谱空间特征学习的HSI网络
和用于海拔特征学习的LiDAR网络。它们每个都包含一个输入模块,一个特征学习模块和融合模块,如上图所示。在特征学习模块中,输入的HSI图像和LiDAR图像分别通过一个三层的网络结构进行特征提取,三层网络结构中的后两个卷积层权值共享。权值共享能够减少网络参数,而且有利于两个分支统一优化。特征提取后则进入信息的融合模块,在融合模块中,构造了三个分类器,每个CNN都有一个输出层,它们的融合特征也具有输出层。

如图2所示,两组图像特征首先通过特征级融合 \(F\) 获得特征级融合特征\(F3=F1+F2\) 或者 \(F3=max(F1,F2)\),特征级融合可以采用逐元素相加或者Max函数。然后对上述 \(F1,F2,F3\) 分别以下操作:
\]
然后文中使用决策级融合 \(D\) 获得最终的融合特征:\(O=F1\odot y1+F2\odot y2+F3\odot y3\),\(\odot\) 为加权操作。
然后 \(L1\) 表示HSI图像(\(y1\))的交叉熵损失,\(L2\)表示LiDAR图像(\(y2\))的交叉熵损失。\(L3\)表示融合信息(\(O\))的交叉熵损失。所以最终的损失函数为:
\]
EXPERIMENTS



CONCLUSIONS
在将来需要探索更强大的邻近提取方法,因为当前的分类图仍然存在过度平滑的问题。
论文学习笔记 - Classifification of Hyperspectral and LiDAR Data Using Coupled CNNs的更多相关文章
- 论文学习笔记 - 高光谱 和 LiDAR 融合分类合集
A³CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Se ...
- Apache Calcite 论文学习笔记
特别声明:本文来源于掘金,"预留"发表的[Apache Calcite 论文学习笔记](https://juejin.im/post/5d2ed6a96fb9a07eea32a6f ...
- Lasso估计论文学习笔记(一)
最近课程作业让阅读了这篇经典的论文,写篇学习笔记. 主要是对论文前半部分Lasso思想的理解,后面实验以及参数估计部分没有怎么写,中间有错误希望能提醒一下,新手原谅一下. 1.整体思路 作者提出了一种 ...
- Raft论文学习笔记
先附上论文链接 https://pdos.csail.mit.edu/6.824/papers/raft-extended.pdf 最近在自学MIT的6.824分布式课程,找到两个比较好的githu ...
- 论文学习笔记--无缺陷样本产品表面缺陷检测 A Surface Defect Detection Method Based on Positive Samples
文章下载地址:A Surface Defect Detection Method Based on Positive Samples 第一部分 论文中文翻译 摘要:基于机器视觉的表面缺陷检测和分类可 ...
- QA问答系统,QA匹配论文学习笔记
论文题目: WIKIQA: A Challenge Dataset for Open-Domain Question Answering 论文代码运行: 首先按照readme中的提示安装需要的部分 遇 ...
- 【Python学习笔记】Coursera课程《Python Data Structures》 密歇根大学 Charles Severance——Week6 Tuple课堂笔记
Coursera课程<Python Data Structures> 密歇根大学 Charles Severance Week6 Tuple 10 Tuples 10.1 Tuples A ...
- JMeter学习笔记(九) 参数化2--CSV Data Set Config
2.CSV Data Set Config 1)添加 CSV Data Set Confi 2)配置CSV Data Set Config 3)添加HTTP请求,引用参数,格式 ${} 4)执行HTT ...
- JMeter学习笔记(十一) 关于 CSV Data Set Config 的 Sharing mode 对取值的影响
关于 CSV Data Set Config 的一些介绍之前已经梳理过了,可以参考: https://www.cnblogs.com/xiaoyu2018/p/10184127.html . 今天主要 ...
随机推荐
- Educational Codeforces Round 95(A-C题解)
A. Buying Torches 题目:http://codeforces.com/contest/1418/problem/A 题解:计算一个公式:1+n*(x-1)=(y+1)*k,求满足该条件 ...
- Python中的相对路径的表示方法
2020/6/3 举例: 现在 6-2.py 想使用 /data/lastfm-2k/user_artists.dat 因为 6-2.py 和 data 是同一级目录,所以正确的写法应该是:
- 登录、认证、token处理、前台cookie存储token
免费课程相关表设计 models的设计 from django.contrib.contenttypes.fields import GenericRelation class Course(mode ...
- 3.Strom-并发机制
- synchronized和lock的作用与对比
一.synchronized的作用 synchronized是java中的一个关键字,用于线程同步.1. 修饰一个代码块,被修饰的代码块称为同步语句块,其作用的范围是大括号{}括起来的代码,作用的对象 ...
- Oracle学习(四)SQL高级--表优化相关(序列、视图等)
INDEX(索引) 可以在表中创建索引,以便更加快速高效地查询数据. 用户无法看到索引,它们只能被用来加速搜索/查询. PS:更新一个包含索引的表需要比更新一个没有索引的表花费更多的时间,这是由于索引 ...
- PPT画成这样,述职答辩还能过吗?
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 标题有点凶,但内容很干! 大部分程序员并不会画PPT,也梳理不出架构图.工作的年头虽 ...
- Python-函数式编程-map reduce filter lambda 三元表达式 闭包
lambda 匿名函数,核心是作为算子,处理逻辑只有一行但具有函数的特性,核心用于函数式编程中 三元运算符 其实本质上是if分支的简化版,满足条件返回 if 前面的值,不满足条件返回 else后面的值 ...
- Centos-bzip2压缩文件-bzip2 bunzip2
bzip2 buzip2 对文件进行压缩与解压缩,类似 gzip gunzip命令,只能压缩文件,对目录则压缩目录下文件,生成以 .bz2为扩展名的文件 相关选项 -d 解压 -v 压缩或解压显示详细 ...
- linux_命令格式和命令提示符
# linux 中一切皆文件 命令格式: 命令 [功能选项] [文件路径] cmd [options] [path] # 多个功能选项,要放在一起,如 rsync -avz /backup backu ...