Classifification of Hyperspectral and LiDAR Data Using Coupled CNNs

来源:IEEE TGRS 2020

下载:https://arxiv.org/abs/2002.01144

Abstract

本篇论文的主要工作就是基于信息融合的分类任务。

在这篇论文中,作者通过使用两个耦合的CNN,提出一种融合高光谱和LiDAR数据的框架。设计一个CNN从高光谱数据中了解光谱空间特征,另一个则用于捕获来自LiDAR数据。它们都由三个卷积层组成,最后两个卷积层通过参数共享策略。在融合阶段,特征级融合和决策级融合方法同时用于集成这些充足的异质特征。对于特征级融合,评估了三种不同的融合策略,包括串联策略,最大化策略和求和策略。对于决策级融合,加权采用求和策略,确定权重通过每个输出的分类精度。

提出的模型根据在美国休斯顿获得的城市数据集进行评估,还有在意大利Trento农村地区捕获的数据。在休斯顿数据中,作者的模型可以达到新记录,整体精度为96.03%。在Trento数据上,其总体精度为99.12%。这些结果充分证明了作者提出的模型的有效性。

INTRODUCTION

文中模型的数据源是两幅异质图像——高光谱图像(HSI)和激光雷达(LiDAR)图像。

HSI图像相比MSI具有更丰富的光谱信息,但是对于同一材质的物体区分性较弱,他们具有相似的光谱回应。不同于HSI,LiDAR可以记录物体的海拔信息,能够为HSI提供补充,二者优势互补。

例如:区域中的楼房和道路由同样的混凝土结构组成,HSI图像很难区分二者之间的差别,但是LiDAR图像则可以准确区分出楼房和道路,因为他们有不同的高度。相反,LiDAR无法区分两条用不同材料(沥青和混凝土)组成的道路,而可以用HSI。因此,融合高光谱和LiDAR数据是一种很有前途的方案,其性能已经得到了验证。

METHODOLOGY

作者提出的模型主要包括两个网络:用于光谱空间特征学习的HSI网络

和用于海拔特征学习的LiDAR网络。它们每个都包含一个输入模块,一个特征学习模块和融合模块,如上图所示。在特征学习模块中,输入的HSI图像和LiDAR图像分别通过一个三层的网络结构进行特征提取,三层网络结构中的后两个卷积层权值共享。权值共享能够减少网络参数,而且有利于两个分支统一优化。特征提取后则进入信息的融合模块,在融合模块中,构造了三个分类器,每个CNN都有一个输出层,它们的融合特征也具有输出层。

如图2所示,两组图像特征首先通过特征级融合 \(F\) 获得特征级融合特征\(F3=F1+F2\) 或者 \(F3=max(F1,F2)\),特征级融合可以采用逐元素相加或者Max函数。然后对上述 \(F1,F2,F3\) 分别以下操作:

\[y1=softmax(W1F1), y2=softmax(W2F2), y3=softmax(W3F3), y1,y2,y3\in R^{c*1}
\]

然后文中使用决策级融合 \(D\) 获得最终的融合特征:\(O=F1\odot y1+F2\odot y2+F3\odot y3\),\(\odot\) 为加权操作。

然后 \(L1\) 表示HSI图像(\(y1\))的交叉熵损失,\(L2\)表示LiDAR图像(\(y2\))的交叉熵损失。\(L3\)表示融合信息(\(O\))的交叉熵损失。所以最终的损失函数为:

\[L=\lambda1L1+\lambda2L2+L3
\]

EXPERIMENTS

CONCLUSIONS

在将来需要探索更强大的邻近提取方法,因为当前的分类图仍然存在过度平滑的问题。

论文学习笔记 - Classifification of Hyperspectral and LiDAR Data Using Coupled CNNs的更多相关文章

  1. 论文学习笔记 - 高光谱 和 LiDAR 融合分类合集

    A³CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Se ...

  2. Apache Calcite 论文学习笔记

    特别声明:本文来源于掘金,"预留"发表的[Apache Calcite 论文学习笔记](https://juejin.im/post/5d2ed6a96fb9a07eea32a6f ...

  3. Lasso估计论文学习笔记(一)

    最近课程作业让阅读了这篇经典的论文,写篇学习笔记. 主要是对论文前半部分Lasso思想的理解,后面实验以及参数估计部分没有怎么写,中间有错误希望能提醒一下,新手原谅一下. 1.整体思路 作者提出了一种 ...

  4. Raft论文学习笔记

    先附上论文链接  https://pdos.csail.mit.edu/6.824/papers/raft-extended.pdf 最近在自学MIT的6.824分布式课程,找到两个比较好的githu ...

  5. 论文学习笔记--无缺陷样本产品表面缺陷检测 A Surface Defect Detection Method Based on Positive Samples

    文章下载地址:A Surface Defect Detection Method Based on Positive Samples 第一部分  论文中文翻译 摘要:基于机器视觉的表面缺陷检测和分类可 ...

  6. QA问答系统,QA匹配论文学习笔记

    论文题目: WIKIQA: A Challenge Dataset for Open-Domain Question Answering 论文代码运行: 首先按照readme中的提示安装需要的部分 遇 ...

  7. 【Python学习笔记】Coursera课程《Python Data Structures》 密歇根大学 Charles Severance——Week6 Tuple课堂笔记

    Coursera课程<Python Data Structures> 密歇根大学 Charles Severance Week6 Tuple 10 Tuples 10.1 Tuples A ...

  8. JMeter学习笔记(九) 参数化2--CSV Data Set Config

    2.CSV Data Set Config 1)添加 CSV Data Set Confi 2)配置CSV Data Set Config 3)添加HTTP请求,引用参数,格式 ${} 4)执行HTT ...

  9. JMeter学习笔记(十一) 关于 CSV Data Set Config 的 Sharing mode 对取值的影响

    关于 CSV Data Set Config 的一些介绍之前已经梳理过了,可以参考: https://www.cnblogs.com/xiaoyu2018/p/10184127.html . 今天主要 ...

随机推荐

  1. [Java并发编程之美]第2章 并发编程的其他基础知识 补充知识

    基本概念 并行与并发 并行:单位时间内多个任务同时执行(多核CPU). 并发:同一时间段内多个任务同时都在执行(CPU时间片轮转). 线程安全性问题 线程安全问题:指多个线程同时读写一个共享资源而没有 ...

  2. [LeetCode]121、122、309 买股票的最佳时机系列问题(DP)

    121.买卖股票的最佳时机 题目 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润. 注意 ...

  3. Java读取excel 支持xls 和 xlsx格式

    1.工具类public class InExcelTool { //根据指定位置单独读取一个 public static String getContent(String file, int page ...

  4. pxe+kickstart无人值守批量安装linux

    一.原理和概念: 1.PXE:         PXE 并不是一种安装方式,而是一种引导的方式.进行 PXE 安装的必要条件是要安装的计算机中包含一个 PXE 支持的网卡(NIC),即网卡中必须要有 ...

  5. 突发!美商务部宣布封禁微信,TikTok——面对科技封锁,如何应对

    刚刚美国商务部忽然发布了这则新闻,为了回应特朗普2020年8月6号的行政令,称这些应用程序存在安全威胁. 禁令中称,自2020年9月20日起,美国政府将: 1 禁止通过美国在线移动应用程序商店分发或维 ...

  6. Tomcat 第三篇:总体架构设计

    Tomcat 总体架构设计 在开始这篇文章的时候,忽然发现上一篇内容的题目不是很合适,不应该叫启动流程,更确切的应该是叫启动脚本. 在最开始,先介绍下 Tomcat 的总体设计,先有一个大概的印象,对 ...

  7. JVM学习(八)指令重排序

    一.数据依赖性 在学习JVM的指令重排序之前,我们先了解一下什么是数据依赖性: 编译器和处理器在处理具体的指令时,可能会对操作进行重排序来提高执行性能[多条指令并行执行,所以提升性能的同时也可能会导致 ...

  8. dubbo学习(六)dubbo管理控制台

    管理控制台的安装与使用 下载地址:https://github.com/apache/dubbo-admin/tree/master(包含管理控制台和监控中心) PS:  下载前要选择master分支 ...

  9. C# lock 死锁问题排查方法

    多线程程序发生死锁,某些重要线程卡住,不正常工作.排查起来非常麻烦.以下内容记录排查方法 1.确定死锁的位置,一般死锁会lock到某一行具体的代码,比如我就死锁在类似如下代码中 public void ...

  10. Spring基础知识1--环境搭建、bean创建、依赖注入、注解注入

    一.Spring两大核心内容 1.控制反转IOC/DI:  应用本身不负责对象的创建和维护,对象和依赖对象的创建完全交给容器管理. 2.AOP(面向切面编程):通过预编译的方式,在运行期通过动态代理的 ...