逻辑回归与线性回归

逻辑回归 线性回归
目标函数 $\prod_{i=1}^N[\pi(x_i)^{y_i}][(1-\pi(x_i))^{(1-y_i)}] $ \(\frac{1}{2}\sum_{i=1}^N(\hat{y_i}-y_i)^2\)
输出 离散值(分类) 连续值(回归)
求解 对似然函数求导,交叉熵 最小均方差求导

联系:

  • 输出是从连续值到离散值的映射

    \(\pi(x)=p(y=1|x)=\frac{exp(wx)}{1+exp(wx)}=\frac{1}{1+exp(-wx)}\),sigmoid激活函数将输出的连续值变成了离散值,在没有sigmoid函数时,输出就是\(wx\), 和回归的输出一样。

  • 求解时都可以使用梯度下降

逻辑回归

1.建立目标函数

设 \(P(y=1|x) = \pi(x), P(y=0|x) = 1-\pi(x)\)

似然函数为:

\[\prod_{i=1}^N[\pi(x_i)^{y_i}][(1-\pi(x_i))^{(1-y_i)}]
\]

对数似然函数:

\[\begin{aligned}
L(w) &= \sum y_ilog(\pi(x_i))+(1-y_i)log(1-\pi(x_i)) \\
&= \sum y_ilog(\pi(x_i))+log(1-\pi(x_i))-y_ilog(1-\pi(x_i)) \\
&= \sum y_i(log\frac{\pi(x_i)}{1-\pi(x_i)})+log(1-\pi(x_i)) \\
&= \sum y_i(wx_i)-log(1+exp(wx_i))
\end{aligned}
\]

2. 梯度求解

\[\begin{aligned}
\nabla L(w) &= \sum y_ix_i - \frac{x_iexp(wx_i)}{1+exp(wx_i)}
\end{aligned}
\]

求极大值,用梯度上升:

\[w = w + \alpha \nabla L(w)
\]

3. 实现

"""
只写了核心部分
"""
def fit(x,y,n_iter):
cal_gradient(x,y,alpha,n_iter) def cal_grdient(x,y,alpha,n_iter):
"""sgd
"""
w = np.ones(len(x))
for i in range(n_iter):
for xi,yi in zip(x,y):
grdient = (xi*yi-xi*(np.exp(w*xi)/(1+np.exp(w*x_i))))
w = w + alpha*gradient
return w def loss(y,y_hat):
pass def predict(x):
y_hat = w*x

线性回归

1. 建立目标函数

\[J(w) = \frac{1}{2}\sum(\hat y - y)^2
\]

2. 求解

\[\begin{aligned}
\nabla J(w) &= \sum (\hat y_i - y_i) \frac{\partial\hat y}{\partial w} \\
&= \sum (\hat y_i - y)x_i
\end{aligned}
\]

求极小值,使用梯度下降:

\[w = w - \alpha \nabla J(w)
\]

3. 实现

和逻辑回归比,只改变了求梯度方法

"""
只写了核心部分
"""
def fit(x,y,n_iter):
cal_gradient(x,y,alpha,n_iter) def cal_grdient(x,y,alpha,n_iter):
"""sgd
"""
w = np.ones(len(x))
for i in range(n_iter):
for xi,yi in zip(x,y):
grdient = xi*(w*xi-yi)
w = w + alpha*gradient
return w def loss(y,y_hat):
pass def predict(x):
y_hat = w*x

逻辑回归与交叉熵

熵:

  • 信息熵:衡量信息量大小

    \[H(x) = -\sum^n_{i=1}p(x_i)log(p(x_i))
    \]

    为什么取负号?

    概率值越大,信息量越小(倾向于确定事件)

  • 相对熵(KL散度):衡量两个概率分布间差异

    \[D_{KL}(p||q) =\sum^n_{i=1}p(x_i)log(\frac{p(x_i)}{q(x_i)})
    \]

    KL散度越小,表示\(p(x)\)与\(q(x)\)的分布更加接近

  • 交叉熵

    \[H(p,q) = -\sum^n_{i=1}p(x_i)log(q(x_i))
    \]

    为什么使用交叉熵作为损失函数?

    KL散度衡量真实分布与预测之间的差异,需要最小化KL散度。KL = 交叉熵 - 信息熵,给定原样本分布 p 时,信息熵为常量,所以最小化交叉熵即为最小化KL散度。

对 0-1 分布,假设预测概率为p,交叉熵为:

\[-\sum ylog(p)+(1-y)log(1-p)
\]

而逻辑回归似然函数为

\[L(w) = \sum [y_ilog(\pi (x_i))+(1-y_i)log(1-\pi(x_i))]
\]

极大化似然函数相当于极小化交叉熵。

references:

机器学习实战

统计机器学习

https://blog.csdn.net/b1055077005/article/details/100152102

LR与LR?的更多相关文章

  1. LL LR SLR LALR 傻傻分不清

    [转] 一:LR(0),SLR(1),规范LR(1),LALR(1)的关系     首先LL(1)分析法是自上而下的分析法.LR(0),LR(1),SLR(1),LALR(1)是自下而上的分析法.   ...

  2. 逻辑回归LR

    逻辑回归算法相信很多人都很熟悉,也算是我比较熟悉的算法之一了,毕业论文当时的项目就是用的这个算法.这个算法可能不想随机森林.SVM.神经网络.GBDT等分类算法那么复杂那么高深的样子,可是绝对不能小看 ...

  3. 编译系统中的LR与LL理解

    编译原理:LL(1),LR(0),SLR(1),LALR(1),LR(1)对比 LL(1)定义:一个文法G是LL(1)的,当且仅当对于G的每一个非终结符A的任何两个不同产生式 A→α|β,下面的条件成 ...

  4. lr各种问题以及解决办法

    LR 脚本为空的解决方法: 1.去掉ie设置中的第三方支持取消掉 2.在系统属性-高级-性能-数据执行保护中,添加loadrunner安装目录中的vugen.exe文件 遇到flight界面为空的解决 ...

  5. 软件测试面试(2)LR篇

    一:LoadRunner常见问题整理 1.LR 脚本为空的解决方法: 1.去掉ie设置中的第三方支持取消掉 2.在系统属性-高级-性能-数据执行保护中,添加loadrunner安装目录中的vugen. ...

  6. LR 常见问题收集及总结

    一:LoadRunner常见问题整理 1.LR 脚本为空的解决方法: 1.去掉ie设置中的第三方支持取消掉 2.在系统属性-高级-性能-数据执行保护中,添加loadrunner安装目录中的vugen. ...

  7. (转)深入理解SP、LR和PC

    网址:http://blog.csdn.net/zhou1232006/article/details/6149548 深入理解ARM的这三个寄存器,对编程以及操作系统的移植都有很大的裨益. 1.堆栈 ...

  8. GBDT与LR融合提升广告点击率预估模型

    1GBDT和LR融合      LR模型是线性的,处理能力有限,所以要想处理大规模问题,需要大量人力进行特征工程,组合相似的特征,例如user和Ad维度的特征进行组合.      GDBT天然适合做特 ...

  9. LR测试

    LoadRunner种预测系统行性能负载测试工具通模拟千万用户实施并发负载及实性能监测式确认查找问题LoadRunner能够整企业架构进行测试通使用 LoadRunner企业能限度缩短测试间优化性能加 ...

随机推荐

  1. pandas_重采样多索引标准差协方差

    # 重采样 多索引 标准差 协方差 import pandas as pd import numpy as np import copy # 设置列对齐 pd.set_option("dis ...

  2. ajax模拟表单提交,后台使用npoi实现导入操作 方式二

    页面代码: <form id="form1" enctype="multipart/form-data"> <div style=" ...

  3. 一些Tips

    https://www.cnblogs.com/yeungchie/ 1. 快捷键e,有个EnableDimming选项,勾选后只会高亮你所选中的器件连线等等,其他器件亮度会下降,和mark不同,有利 ...

  4. MyBatis辟邪剑谱

    一 MyBatis简介 MyBatis是一个优秀的持久层框架 它对JDBC操作数据库的过程进行封装 开发者只需要关注SQL本身 而不需要花费精力去处理JDBC繁杂的过程代码 MyBatis将要执行的各 ...

  5. hadoop 莫名奇妙产生分区 0000 00001 00002

    使用 multipleOutputs.write()时候,莫名奇妙的产生好多分区   job.setCombinerClass(ClassifierReduce.class); //注释掉该句 就不会 ...

  6. WEB应用中的路径问题及乱码问题

    1 WEB应用中的路径问题  在web应用中,由于使用转发跳转路径时,地址栏不变.此时使用相对路径(../)存在404现象. 故使用绝对路径,解决web应用的路径问题. 什么是绝对路径,以 “/” 开 ...

  7. three.js 着色器材质之变量(一)

    上一篇说顶点着色器和片元着色器的皮毛,这篇郭先生说一说着色器变量,通过变量可以设置材质.先看看今天要做的如下图.在线案例请点击博客原文. 在这个案例之前,我们先复习一下着色器变量 Uniforms是所 ...

  8. Java集合最全解析,学集合,看这篇就够用了!!!

    在看集合类之前, 我们要先明白一下概念: 1.数据结构 (1):线性表 [1]:顺序存储结构(也叫顺序表) 一个线性表是n个具有相同特性的数据元素的有限序列.数据元素是一个抽象的符号,其具体含义在不同 ...

  9. 谈谈对Java平台的理解

    从我第一次接触Java的时候,老师就说"Write once,run anywhere",这句话虽然听起来有一点太过于形式主义,但是也突出了它的特点.那么,现在的我们应该总结一下和 ...

  10. 2020重新出发,JAVA语言,JAVA的诞生和发展史

    java的诞生 在1991年时候,James Gosling在Sun公司的工程师小组想要设计这样一种主要用于像电视盒这样的消费类电子产品的小型计算机语言. 这些电子产品有一个共同的特点:计算处理能力和 ...