有些时候需要发送短信给用户生成四位随机数字,这里在python中我们可以根据python自带的标准库random和string来实现。

  • random下有三个可以随机取数的函数,分别是choice,choices,sample
 # random.choice
def choice(self, seq):
"""Choose a random element from a non-empty sequence."""
try:
i = self._randbelow(len(seq))
except ValueError:
raise IndexError('Cannot choose from an empty sequence') from None
return seq[i]
 # random.choices
def choices(self, population, weights=None, *, cum_weights=None, k=1):
"""Return a k sized list of population elements chosen with replacement. If the relative weights or cumulative weights are not specified,
the selections are made with equal probability. """
random = self.random
if cum_weights is None:
if weights is None:
_int = int
total = len(population)
return [population[_int(random() * total)] for i in range(k)]
cum_weights = list(_itertools.accumulate(weights))
elif weights is not None:
raise TypeError('Cannot specify both weights and cumulative weights')
if len(cum_weights) != len(population):
raise ValueError('The number of weights does not match the population')
bisect = _bisect.bisect
total = cum_weights[-1]
hi = len(cum_weights) - 1
return [population[bisect(cum_weights, random() * total, 0, hi)]
for i in range(k)]
 # random.sample

 def sample(self, population, k):
"""Chooses k unique random elements from a population sequence or set. Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is
in selection order so that all sub-slices will also be valid random
samples. This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices). Members of the population need not be hashable or unique. If the
population contains repeats, then each occurrence is a possible
selection in the sample. To choose a sample in a range of integers, use range as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(range(10000000), 60)
""" # Sampling without replacement entails tracking either potential
# selections (the pool) in a list or previous selections in a set. # When the number of selections is small compared to the
# population, then tracking selections is efficient, requiring
# only a small set and an occasional reselection. For
# a larger number of selections, the pool tracking method is
# preferred since the list takes less space than the
# set and it doesn't suffer from frequent reselections. if isinstance(population, _Set):
population = tuple(population)
if not isinstance(population, _Sequence):
raise TypeError("Population must be a sequence or set. For dicts, use list(d).")
randbelow = self._randbelow
n = len(population)
if not 0 <= k <= n:
raise ValueError("Sample larger than population or is negative")
result = [None] * k
setsize = 21 # size of a small set minus size of an empty list
if k > 5:
setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
if n <= setsize:
# An n-length list is smaller than a k-length set
pool = list(population)
for i in range(k): # invariant: non-selected at [0,n-i)
j = randbelow(n-i)
result[i] = pool[j]
pool[j] = pool[n-i-1] # move non-selected item into vacancy
else:
selected = set()
selected_add = selected.add
for i in range(k):
j = randbelow(n)
while j in selected:
j = randbelow(n)
selected_add(j)
result[i] = population[j]
return result

从上面这三个函数看来,都可以在给定的一个数字集内随机产生四位数字。三种方法如下:

 import string
import random # 方法一
seeds = string.digits
random_str = []
for i in range(4):
random_str.append(random.choice(seeds))
print("".join(random_str)) # 方法二
seeds = string.digits
random_str = random.choices(seeds, k=4)
print("".join(random_str)) # 方法三
seeds = string.digits
random_str = random.sample(seeds, k=4)
print("".join(random_str))
  • 说明一下:string.digits是一个定义好的数字字符串,就是从"0123456789"。
 """
whitespace -- a string containing all ASCII whitespace
ascii_lowercase -- a string containing all ASCII lowercase letters
ascii_uppercase -- a string containing all ASCII uppercase letters
ascii_letters -- a string containing all ASCII letters
digits -- a string containing all ASCII decimal digits
hexdigits -- a string containing all ASCII hexadecimal digits
octdigits -- a string containing all ASCII octal digits
punctuation -- a string containing all ASCII punctuation characters
printable -- a string containing all ASCII characters considered printable
""" # Some strings for ctype-style character classification
whitespace = ' \t\n\r\v\f'
ascii_lowercase = 'abcdefghijklmnopqrstuvwxyz'
ascii_uppercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
ascii_letters = ascii_lowercase + ascii_uppercase
digits = ''
hexdigits = digits + 'abcdef' + 'ABCDEF'
octdigits = ''
punctuation = r"""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""
printable = digits + ascii_letters + punctuation + whitespace

上述三种方式虽说都可以生成随机数,但是choice和choices随机取得数字是可重复的,而sample方法的随机数是不会重复的。这个是他们之间的区别之一。

python生成四位随机数的更多相关文章

  1. 生成四位随机数的PHP代码

    纯数字的四位随机数 rand(1000,9999) 数字和字符混搭的四位随机字符串: function GetRandStr($len) { $chars = array( "a" ...

  2. js生成四位随机数的简便方法

    do out = Math.floor(Math.random()*10000); while( out < 1000 ) alert( out );

  3. java生成四位随机数,包含数字和字母 区分大小写,特别适合做验证码,android开发

    private String generateWord() { String[] beforeShuffle = new String[] { "2", "3" ...

  4. 【python】【转】Python生成随机数的方法

    如果你对在Python生成随机数与random模块中最常用的几个函数的关系与不懂之处,下面的文章就是对Python生成随机数与random模块中最常用的几个函数的关系,希望你会有所收获,以下就是这篇文 ...

  5. Python生成随机数的方法

    这篇文章主要介绍了Python生成随机数的方法,有需要的朋友可以参考一下 如果你对在Python生成随机数与random模块中最常用的几个函数的关系与不懂之处,下面的文章就是对Python生成随机数与 ...

  6. python生成随机数、随机字符串

    python生成随机数.随机字符串 import randomimport string # 随机整数:print random.randint(1,50) # 随机选取0到100间的偶数:print ...

  7. [ Python入门教程 ] Python生成随机数模块(random)使用方法

    1.使用randint(a,b)生成指定范围内的随机整数.randint(a,b)表示从序列range([a,b])中获取一个随机数,包括b. >>> random.randint( ...

  8. Python下探究随机数的产生原理和算法

    资源下载 #本文PDF版下载 Python下探究随机数的产生原理和算法(或者单击我博客园右上角的github小标,找到lab102的W7目录下即可) #本文代码下载 几种随机数算法集合(和下文出现过的 ...

  9. 利用Python生成随机密码

    #coding:utf-8 #利用python生成一个随机10位的字符串 import string import random import re list = list(string.lowerc ...

随机推荐

  1. dom4j解析简单的xml文件 解析元素并封装到对象

    package cn.itcast.xml; import cn.itcast.domain.Book; import org.dom4j.Document; import org.dom4j.Doc ...

  2. Django ORM 事务操作

    事务 把一些列的操作(步骤)当作一个事务 全部的步骤都成功才成功 经典例子:银行转账 代码实现: import os if name == 'main': os.environ.setdefault( ...

  3. Luogu P1955 [NOI2015]程序自动分析

    又一次做了这道题,感慨万千. 记得寒假时,被cmd2001点起来讲这道题,胡言乱语..受尽鄙视(现在也是好吗)..后来下课想A掉,可是3天下来总是错...后来抄了分题解就咕咕了... 今天老师留了这道 ...

  4. bzoj 2301: [HAOI2011]Problem b mobius反演 RE

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 设f(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) = i的个数. 设F( ...

  5. 【转】pom.xml讲解

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  6. 【机器学习实战】第2章 K-近邻算法(k-NearestNeighbor,KNN)

    第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法主要是用来进行分类的. KNN 场景 电影可以按照题材分类,那么如何区分 动作片 和 爱情片 呢? 动作 ...

  7. WisdomTool REST Client 下载 测试请求,生成api文档

    https://github.com/Wisdom-Projects/rest-client

  8. POJ 1651 Multiplication Puzzle (区间DP,经典)

    题意: 给出一个序列,共n个正整数,要求将区间[2,n-1]全部删去,只剩下a[1]和a[n],也就是一共需要删除n-2个数字,但是每次只能删除一个数字,且会获得该数字与其旁边两个数字的积的分数,问最 ...

  9. 晒一下MAC下终端颜色配置

    效果图: ~/.vimrc 配置 filetype on set history=1000 set background=dark syntax on set autoindent set smart ...

  10. Unity中实现全局管理类的几种方式

    (搬运自我在SegmentFault的博客) 如何在Unity中实现全局管理类?由于Unity脚本的运行机制和面向组件编程(COP)的思想,实现起来和普通的方式略有差别. 第一种方式是使用静态类.适合 ...