多元线性回归(pandas/scikit-learn)
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LinearRegression #数据1
tem16_1 = [3113,3122,3131,3137,3146,3149,3157,3166,3172,3178,3172,3151,3137,3131,3128,3107,3095,3081,3070,3049,3038,3023,3011,2997,2988,2985,2974,2957,2942,2928,2916,2901,2887,2884,2879,2870,2856,2848,2836,2828,2810,2802,2793,2785,2776,2768,2762,2756,2762,2765,2762,2771,2748,2731,2708,2697,2674,2697,2702,2725,2737,2759,2771,2787,2802,2819,2833,2845,2856,2859,2873,2879,2896,2898,2910,2922,2933,2945,2957,2968,2980,2985,3000,3011,3023,3038,3046,3058,3070,3072,3084,3090,3098,3107,3119,3122,3131,3134,3140,3143,3149,3154,3151,3166,3189,3178,3181,3169,3166,3169,3154,3137,3116,3107,3090,3093,3087,3075,3052,3038,3026,3017,3008,3002,2994,2991,2988,2977,2957,2951,2936,2931,2936,2957,2980,2962,2948,2928,2913,2898,2879,2867,2865,2856,2853,2848,2842,2833,2830,2819,2813,2807,2799,2796,2787,2785,2779,2773]
#数据2
tem16_2 = [4185,4209,4233,4256,4279,4303,4326,4349,4372,4398,4421,4414,4387,4383,4360,4349,4326,4303,4279,4264,4233,4209,4185,4161,4113,4088,4064,4043,4019,4023,4002,3978,3954,3933,3912,3891,3870,3845,3824,3802,3781,3759,3715,3693,3671,3648,3626,3603,3580,3534,3507,3496,3490,3467,3451,3429,3419,3432,3454,3464,3486,3496,3518,3542,3565,3588,3611,3633,3656,3678,3700,3722,3744,3766,3788,3809,3831,3873,3895,3919,3940,3964,3988,4010,4039,4060,4084,4108,4133,4157,4181,4205,4228,4252,4276,4299,4322,4345,4368,4391,4414,4436,4458,4455,4470,4485,4462,4458,4451,4447,4425,4402,4387,4364,4368,4349,4326,4307,4287,4264,4240,4221,4225,4197,4177,4169,4149,4133,4113,4088,4064,4043,4019,3995,3985,3968,3947,3926,3905,3884,3863,3842,3820,3799,3777,3773,3759,3737,3715,3693,3671,3648,3626,3603,3576,3553,3530,3507]
#回归数据
result = [2364,2356,2356,2353,2353,2353,2353,2367,2367,2367,2383,2362,2435,2460,2427,2427,2451,2446,2424,2430,2407,2399,2386,2367,2372,2375,2364,2342,2326,2309,2285,2283,2288,2277,2285,2307,2329,2351,2372,2396,2421,2492,2312,2283,2280,2266,2253,2239,2234,2231,2247,2247,2242,2220,2198,2098,2034,2031,2053,2031,2093,2071,2093,2077,2142,2163,2185,2206,2215,2215,2215,2215,2217,2217,2217,2217,2217,2239,2239,2239,2256,2256,2256,2256,2274,2274,2274,2274,2293,2309,2293,2309,2331,2331,2331,2331,2331,2331,2331,2331,2331,2331,2356,2367,2380,2383,2386,2370,2378,2372,2351,2337,2320,2299,2293,2312,2334,2329,2323,2315,2304,2307,2301,2304,2290,2272,2256,2234,2237,2245,2266,2258,2261,2253,2266,2245,2223,2212,2215,2204,2198,2201,2223,2245,2261,2277,2269,2288,2290,2315,2261,2253,2266,2245,2223,2212,2215,2215]
#以DataFrame存储数据
data = pd.DataFrame([tem16_1,tem16_2,result],index=['tem16_1','tem16_2','result'])
data = data.T
X = data[['tem16_1','tem16_2']] y = data['result']
#测试集和训练集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
#训练
linreg = LinearRegression()
linreg.fit(X_train, y_train)
#结果
print linreg.intercept_
print linreg.coef_
print zip(['tem16_1','tem16_2'], linreg.coef_)
多元线性回归(pandas/scikit-learn)的更多相关文章
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- [机器学习Lesson4]多元线性回归
1. 多元线性回归定义 多元线性回归也被称为多元线性回归. 我们现在介绍方程的符号,我们可以有任意数量的输入变量. 这些多个特征的假设函数的多变量形式如下: hθ(x)=θ0+θ1x1+θ2x2+θ3 ...
- 利用TensorFlow实现多元线性回归
利用TensorFlow实现多元线性回归,代码如下: # -*- coding:utf-8 -*- import tensorflow as tf import numpy as np from sk ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- 机器学习——Day 3 多元线性回归
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https:// ...
- Tensorflow之多元线性回归问题(以波士顿房价预测为例)
一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...
- 100天搞定机器学习|Day3多元线性回归
前情回顾 [第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解.实现方式是sklearn中的LinearRegression,我们也 ...
- R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...
随机推荐
- Java 变量及基本数据类型
1.Java变量 1.1 变量的概念 内存中开辟的一块存储空间,用于存放运算过程中需要用到的数据: 该区域有自己的名称(变量名)和类型(数据类型): 该区域的数据可以在同一类型范围内不断变化: 1) ...
- 从程序猿到SAP产品经理,我是如何转型的?
文章作者:Jason Xia(夏建军) Jerry: 今天的文章来自Jason Xia, 我的老同事,和我一样从2007年进入SAP成都研究院工作至今.这篇文章讲述了Jason是如何从一名SAP资深开 ...
- Android内核剖析(1)
Linux的启动过程 开机上电执行bootloader,将内核的前n条指令加载到系统内存中------>系统内核的初始化----------->启动应用程序. bootloader的位置装 ...
- PWD简介与妙用(一个免费、随时可用的Docker实验室)
转载自 https://baiyue.one/archives/472.html 本文介绍下 PWD 的历史,并依据本站最近学习心得,经过多次尝试,终于打通了 Docker 与常规宝塔面板搭建,因此, ...
- webpack-dev-server配置指南webpack3.0
最近正在研究webpack,听说webpack可以自己搭建一个小型的服务器(使用过vue-cli的朋友应该都见识到过),所以迫不及待的想要尝试一下.不过,在实际操作中发现,用webpack搭建服务器仍 ...
- 2018.5.14 PHP基础学习
1.使用PHP输出HTML 使用PHP输出一个表格,并且通过style标签改变字体 <!--思考与练习--> <style type="text/css"> ...
- websocket+订阅发布者模式模拟实现股票价格实时刷新
1.新建文件夹 2.文件夹中新建index.html 和 index.js index.html <!DOCTYPE html> <html lang="en"& ...
- JavaScript数组之傻傻分不清系列(split,splice,slice)
因业务场景需求,需要将一个数组截断而不需要影响原数组.这里来理解一下 slice,splice,split slice() 从某个已有的数组返回选定的元素.(JavaScript Array 对象) ...
- NOIP模拟赛 魔方
[题目描述] ccy(ndsf)觉得手动复原魔方太慢了,所以他要借助计算机. ccy(ndsf)家的魔方都是3*3*3的三阶魔方,大家应该都见过. (3的“顺时针”改为“逆时针”,即3 4以图为准.) ...
- js cookie 操作
<html> <head> <meta charset="utf-8"> <title>Javascript cookie</ ...