import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LinearRegression #数据1
tem16_1 = [3113,3122,3131,3137,3146,3149,3157,3166,3172,3178,3172,3151,3137,3131,3128,3107,3095,3081,3070,3049,3038,3023,3011,2997,2988,2985,2974,2957,2942,2928,2916,2901,2887,2884,2879,2870,2856,2848,2836,2828,2810,2802,2793,2785,2776,2768,2762,2756,2762,2765,2762,2771,2748,2731,2708,2697,2674,2697,2702,2725,2737,2759,2771,2787,2802,2819,2833,2845,2856,2859,2873,2879,2896,2898,2910,2922,2933,2945,2957,2968,2980,2985,3000,3011,3023,3038,3046,3058,3070,3072,3084,3090,3098,3107,3119,3122,3131,3134,3140,3143,3149,3154,3151,3166,3189,3178,3181,3169,3166,3169,3154,3137,3116,3107,3090,3093,3087,3075,3052,3038,3026,3017,3008,3002,2994,2991,2988,2977,2957,2951,2936,2931,2936,2957,2980,2962,2948,2928,2913,2898,2879,2867,2865,2856,2853,2848,2842,2833,2830,2819,2813,2807,2799,2796,2787,2785,2779,2773]
#数据2
tem16_2 = [4185,4209,4233,4256,4279,4303,4326,4349,4372,4398,4421,4414,4387,4383,4360,4349,4326,4303,4279,4264,4233,4209,4185,4161,4113,4088,4064,4043,4019,4023,4002,3978,3954,3933,3912,3891,3870,3845,3824,3802,3781,3759,3715,3693,3671,3648,3626,3603,3580,3534,3507,3496,3490,3467,3451,3429,3419,3432,3454,3464,3486,3496,3518,3542,3565,3588,3611,3633,3656,3678,3700,3722,3744,3766,3788,3809,3831,3873,3895,3919,3940,3964,3988,4010,4039,4060,4084,4108,4133,4157,4181,4205,4228,4252,4276,4299,4322,4345,4368,4391,4414,4436,4458,4455,4470,4485,4462,4458,4451,4447,4425,4402,4387,4364,4368,4349,4326,4307,4287,4264,4240,4221,4225,4197,4177,4169,4149,4133,4113,4088,4064,4043,4019,3995,3985,3968,3947,3926,3905,3884,3863,3842,3820,3799,3777,3773,3759,3737,3715,3693,3671,3648,3626,3603,3576,3553,3530,3507]
#回归数据
result = [2364,2356,2356,2353,2353,2353,2353,2367,2367,2367,2383,2362,2435,2460,2427,2427,2451,2446,2424,2430,2407,2399,2386,2367,2372,2375,2364,2342,2326,2309,2285,2283,2288,2277,2285,2307,2329,2351,2372,2396,2421,2492,2312,2283,2280,2266,2253,2239,2234,2231,2247,2247,2242,2220,2198,2098,2034,2031,2053,2031,2093,2071,2093,2077,2142,2163,2185,2206,2215,2215,2215,2215,2217,2217,2217,2217,2217,2239,2239,2239,2256,2256,2256,2256,2274,2274,2274,2274,2293,2309,2293,2309,2331,2331,2331,2331,2331,2331,2331,2331,2331,2331,2356,2367,2380,2383,2386,2370,2378,2372,2351,2337,2320,2299,2293,2312,2334,2329,2323,2315,2304,2307,2301,2304,2290,2272,2256,2234,2237,2245,2266,2258,2261,2253,2266,2245,2223,2212,2215,2204,2198,2201,2223,2245,2261,2277,2269,2288,2290,2315,2261,2253,2266,2245,2223,2212,2215,2215]
#以DataFrame存储数据
data = pd.DataFrame([tem16_1,tem16_2,result],index=['tem16_1','tem16_2','result'])
data = data.T
X = data[['tem16_1','tem16_2']] y = data['result']
#测试集和训练集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
#训练
linreg = LinearRegression()
linreg.fit(X_train, y_train)
#结果
print linreg.intercept_
print linreg.coef_
print zip(['tem16_1','tem16_2'], linreg.coef_)

多元线性回归(pandas/scikit-learn)的更多相关文章

  1. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  2. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  3. [机器学习Lesson4]多元线性回归

    1. 多元线性回归定义 多元线性回归也被称为多元线性回归. 我们现在介绍方程的符号,我们可以有任意数量的输入变量. 这些多个特征的假设函数的多变量形式如下: hθ(x)=θ0+θ1x1+θ2x2+θ3 ...

  4. 利用TensorFlow实现多元线性回归

    利用TensorFlow实现多元线性回归,代码如下: # -*- coding:utf-8 -*- import tensorflow as tf import numpy as np from sk ...

  5. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  6. 机器学习——Day 3 多元线性回归

    写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https:// ...

  7. Tensorflow之多元线性回归问题(以波士顿房价预测为例)

    一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...

  8. 100天搞定机器学习|Day3多元线性回归

    前情回顾 [第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解.实现方式是sklearn中的LinearRegression,我们也 ...

  9. R语言解读多元线性回归模型

    转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...

随机推荐

  1. javaSe-SimpleDateFormat

    SimpleDateFormat呢是一种可以将字符串转为日期或者日期转换成字符串的功能强大的不得了的类: import java.text.ParseException;import java.tex ...

  2. BZOJ 4423: [AMPPZ2013]Bytehattan 并查集+平面图转对偶图

    4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec  Memory Limit: 128 MB Submit: 277  Solved: 183 [Submit ...

  3. 如何将SAP Multi Target应用部署到SAP云平台的Cloud Foundry环境去

    SHINA是SAP HANA Interactive Education的缩写,是一个demo应用,用于演示如何开发SAP HANA原生应用. 这个应用包含了sample数据以及HANA数据库表,vi ...

  4. stixel 理解

    在车辆所处平面建立极坐标占位网格(polar occupancy grid),将视差图所代表的三维世界(3D world) 正交投影到该平面中. occupancy:每个网格被赋予一个占位数,代表了该 ...

  5. CPP-基础:extern"C"

    简介:extern "C" 包含双重含义,从字面上即可得到:首先,被它修饰的目标是“extern”的:其次,被它修饰的目标是“C”的.让我们来详细解读这两重含义. 含义: 1.被e ...

  6. SC || 那些CheckStyle中的错误们

    lab5里给了我们一个checkstyle查代码风格的方法.. 然后 lab4代码 copy一份! 添加checkstyle! 项目 右键 checkstyle!(自信脸) 3s后——7256 war ...

  7. FastText算法

    转载自: https://www.cnblogs.com/huangyc/p/9768872.html 0. 目录 1. 前言 2. FastText原理 2.1 模型架构 2.2 层次SoftMax ...

  8. Java中线程的通讯

    线程间的相互作用:线程之间需要一些协调通信,来共同完成一件任务. Object类中相关的方法有两个notify方法和三个wait方法:因为wait和notify方法定义在Object类中,因此会被所有 ...

  9. string 空值

    string str; string mystr = ""; 则 str == mystr;

  10. Spring多种方式实现依赖注入

    平常的Java开发中,程序员在某个类中需要依赖其它类的方法. 通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理. Spring提出了依赖注入的思想,即依赖类不由 ...