多元线性回归(pandas/scikit-learn)
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LinearRegression #数据1
tem16_1 = [3113,3122,3131,3137,3146,3149,3157,3166,3172,3178,3172,3151,3137,3131,3128,3107,3095,3081,3070,3049,3038,3023,3011,2997,2988,2985,2974,2957,2942,2928,2916,2901,2887,2884,2879,2870,2856,2848,2836,2828,2810,2802,2793,2785,2776,2768,2762,2756,2762,2765,2762,2771,2748,2731,2708,2697,2674,2697,2702,2725,2737,2759,2771,2787,2802,2819,2833,2845,2856,2859,2873,2879,2896,2898,2910,2922,2933,2945,2957,2968,2980,2985,3000,3011,3023,3038,3046,3058,3070,3072,3084,3090,3098,3107,3119,3122,3131,3134,3140,3143,3149,3154,3151,3166,3189,3178,3181,3169,3166,3169,3154,3137,3116,3107,3090,3093,3087,3075,3052,3038,3026,3017,3008,3002,2994,2991,2988,2977,2957,2951,2936,2931,2936,2957,2980,2962,2948,2928,2913,2898,2879,2867,2865,2856,2853,2848,2842,2833,2830,2819,2813,2807,2799,2796,2787,2785,2779,2773]
#数据2
tem16_2 = [4185,4209,4233,4256,4279,4303,4326,4349,4372,4398,4421,4414,4387,4383,4360,4349,4326,4303,4279,4264,4233,4209,4185,4161,4113,4088,4064,4043,4019,4023,4002,3978,3954,3933,3912,3891,3870,3845,3824,3802,3781,3759,3715,3693,3671,3648,3626,3603,3580,3534,3507,3496,3490,3467,3451,3429,3419,3432,3454,3464,3486,3496,3518,3542,3565,3588,3611,3633,3656,3678,3700,3722,3744,3766,3788,3809,3831,3873,3895,3919,3940,3964,3988,4010,4039,4060,4084,4108,4133,4157,4181,4205,4228,4252,4276,4299,4322,4345,4368,4391,4414,4436,4458,4455,4470,4485,4462,4458,4451,4447,4425,4402,4387,4364,4368,4349,4326,4307,4287,4264,4240,4221,4225,4197,4177,4169,4149,4133,4113,4088,4064,4043,4019,3995,3985,3968,3947,3926,3905,3884,3863,3842,3820,3799,3777,3773,3759,3737,3715,3693,3671,3648,3626,3603,3576,3553,3530,3507]
#回归数据
result = [2364,2356,2356,2353,2353,2353,2353,2367,2367,2367,2383,2362,2435,2460,2427,2427,2451,2446,2424,2430,2407,2399,2386,2367,2372,2375,2364,2342,2326,2309,2285,2283,2288,2277,2285,2307,2329,2351,2372,2396,2421,2492,2312,2283,2280,2266,2253,2239,2234,2231,2247,2247,2242,2220,2198,2098,2034,2031,2053,2031,2093,2071,2093,2077,2142,2163,2185,2206,2215,2215,2215,2215,2217,2217,2217,2217,2217,2239,2239,2239,2256,2256,2256,2256,2274,2274,2274,2274,2293,2309,2293,2309,2331,2331,2331,2331,2331,2331,2331,2331,2331,2331,2356,2367,2380,2383,2386,2370,2378,2372,2351,2337,2320,2299,2293,2312,2334,2329,2323,2315,2304,2307,2301,2304,2290,2272,2256,2234,2237,2245,2266,2258,2261,2253,2266,2245,2223,2212,2215,2204,2198,2201,2223,2245,2261,2277,2269,2288,2290,2315,2261,2253,2266,2245,2223,2212,2215,2215]
#以DataFrame存储数据
data = pd.DataFrame([tem16_1,tem16_2,result],index=['tem16_1','tem16_2','result'])
data = data.T
X = data[['tem16_1','tem16_2']] y = data['result']
#测试集和训练集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
#训练
linreg = LinearRegression()
linreg.fit(X_train, y_train)
#结果
print linreg.intercept_
print linreg.coef_
print zip(['tem16_1','tem16_2'], linreg.coef_)
多元线性回归(pandas/scikit-learn)的更多相关文章
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- [机器学习Lesson4]多元线性回归
1. 多元线性回归定义 多元线性回归也被称为多元线性回归. 我们现在介绍方程的符号,我们可以有任意数量的输入变量. 这些多个特征的假设函数的多变量形式如下: hθ(x)=θ0+θ1x1+θ2x2+θ3 ...
- 利用TensorFlow实现多元线性回归
利用TensorFlow实现多元线性回归,代码如下: # -*- coding:utf-8 -*- import tensorflow as tf import numpy as np from sk ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- 机器学习——Day 3 多元线性回归
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https:// ...
- Tensorflow之多元线性回归问题(以波士顿房价预测为例)
一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...
- 100天搞定机器学习|Day3多元线性回归
前情回顾 [第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解.实现方式是sklearn中的LinearRegression,我们也 ...
- R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...
随机推荐
- hihoCoder #1050 : 树中的最长路
题意: 求出树上最长路径的长度,并返回. 思路: 刚看到数据<=10^5,假如是单分支的树,那么有5万层,就不能递归,那就用桟实现, 那就要将长度信息保存在另开的数组中,很麻烦!!这题专门给递归 ...
- LibreOJ #2130. 「NOI2015」软件包管理器
内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 上传者: 匿名 树链剖分+线段树 屠龙宝刀点击就送 #include <vector> ...
- Spring Mybatis PageHelper 设置使用
PageHelper是一个Mybatis的分页插件, 负责将已经写好的sql语句, 进行分页加工. 设置 现在使用的是PageHelper 5.0 版本 : 在build.gradle先引用jar包: ...
- UVA 536 TreeRocvery 树重建 (递归)
根据先序历遍和中序历遍输出后序历遍,并不需要真的建树,直接递归解决 #include<cstdio> #include<cstring> ; char preOrder[N]; ...
- 禁止MySQL开机自动启动的方法
这几天发现电脑卡机变慢了,还有一些卡,发现每次开机MySQL都会自动启动(明明我安装的时候选择了不开机自启,任务管理器启动列表中也没有,但就是自启了...) 1.打开服务列表 有两种方法,一是快捷键 ...
- 为DataGridView控件实现复选功能
实现效果: 知识运用: DataGridViewCheckBoxColumn类 实现代码: private class Fruit { public int Price { get; set; } p ...
- python之道13
看代码分析结果 func_list = [] for i in range(10): func_list.append(lambda :i) v1 = func_list[0]() v2 = func ...
- python之道09
整理函数相关知识点,写博客. 看代码写结果 1. def func(): for i in range(3): print(i) return 666 print(func()) # 0 1 2 66 ...
- java基础——快速排序
今天又把以前学的快速排序拿出来回忆一下 高快省的排序算法 有没有既不浪费空间又可以快一点的排序算法呢?那就是“快速排序”啦!光听这个名字是不是就觉得很高端呢. 假设我们现在对“6 1 2 7 9 3 ...
- Bootstrap 页面标题(Page Header)
Bootstrap页面标题(PageHeader)是个不错功能,它会网页的标题的四周添加适当的间距,当一个网页中有多个标题并且每个标题之间需要添加一定适当的间距,使用页面标题是非常有用的.如果需要使用 ...