[HNOI2010] 弹飞绵羊 bounce
标签:分块。
题解:
200000,而且标号从0开始,很符合分块的条件啊。看看怎么实现。
首先分成√n个区间,然后如果我们对于每一个位置i,求出一个Next[i]和step[i],分别表示跳到的后一个位置与步数,因为是分块所以就是跳到下一个区间的步数与位置了。处理这两个数组要从前到后,只需要O(n)。
然后查询:自然是使用这两个数组,跳出去就return,复杂度O(√n)。
修改:修改一个点自然是O(1),但是前面的会跳到这个地方,那不是前面的都要改?非也,因为Next[]仅仅跨越了一个区间,所有最多有这个区间的起始位置到i个是需要更改的,也就是最大√n个,我们从i到起始位置烦着枚举,复杂度O(√n)。
所以总的复杂度为O(m√n)。
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=;
int n,m,cnt;
int W[MAXN],Next[MAXN],step[MAXN],team[MAXN];
inline int gi(){int res; scanf("%d",&res); return res;}
void update(int p)
{
if(p+W[p]>=n)
{
step[p]=;
Next[p]=n;
return ;
}
int net=p+W[p];
if(team[p]==team[net])
{
step[p]=step[net]+;
Next[p]=Next[net];
}
else
{
step[p]=;
Next[p]=net;
}
}
int query(int p)
{
int res=;
while(p!=n)
{
res+=step[p];
p=Next[p];
}
return res;
}
int main()
{
n=gi(); cnt=sqrt(n);
for(int i=;i<n;i++) W[i]=gi();
for(int i=;i<n;i++) team[i]=i/cnt;
for(int i=n-;i>=;i--) update(i);
m=gi();
while(m--)
{
int op=gi(),p=gi();
if(op==)
{
int w=gi();
W[p]=w;
for(int i=p;i>=;i--)
if(team[p]==team[i])
update(i);
else
break;
}
else
printf("%d\n",query(p));
}
return ;
}
标签:LCT
题解:
此题当然不缺乏LCT做法,对于LCT来说,这道题就是一道模板题,每次修改cut再link,维护sz代表子树的大小。使用一个根节点:n+1,也就是跳出去。M+A+S,查询x的左子树大小即可,也就是比他深度小的点的个数,不就是多少步跳出去吗?
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=;
int n,m;
int fa[MAXN],rev[MAXN],val[MAXN],Q[MAXN],ch[MAXN][],sz[MAXN];
bool isroot(int x){ return ch[fa[x]][]!=x && ch[fa[x]][]!=x; }
void Update(int x){ sz[x]=sz[ch[x][]]+sz[ch[x][]]+; }
bool get(int x){ return ch[fa[x]][]==x ;}
void Down(int x){ if(rev[x]){ rev[ch[x][]]^=; rev[ch[x][]]^=; rev[x]^=; swap(ch[x][],ch[x][]); } }
void Rotate(int x)
{
int old=fa[x],oldf=fa[old],op=get(x);
if(!isroot(old)) ch[oldf][ch[oldf][]==old]=x;
ch[old][op]=ch[x][op^]; fa[ch[x][op^]]=old;
ch[x][op^]=old; fa[old]=x; fa[x]=oldf;
Update(old); Update(x);
}
void Splay(int x)
{
int tp=; Q[]=x;
for(int i=x;!isroot(i);i=fa[i]) Q[++tp]=fa[i];
for(int i=tp;i;i--) Down(Q[i]);
for(int FA; !isroot(x) ; Rotate(x))
{
FA=fa[x];
if(!isroot(FA)) Rotate(get(x)==get(FA)?FA:x);
}
}
void Access(int x){ int t=; while(x){ Splay(x); ch[x][]=t; Update(x); t=x; x=fa[x]; } }
void Makeroot(int x){ Access(x); Splay(x); rev[x]^=;}
void Link(int x,int y){ Makeroot(x); fa[x]=y;}
void Cut(int x,int y){ Makeroot(x); Access(y); Splay(y); if(ch[y][]==x) fa[x]=ch[y][]=;}
int main( )
{
scanf("%d",&n); sz[n+]=;
for(int i=;i<=n;i++) scanf("%d",&val[i]) , sz[i]=;
for(int i=n;i>=;i--) Link(i,min(i+val[i],n+));
scanf("%d",&m);
while(m--)
{
int x,op,y,ans=;
scanf("%d%d",&op,&x); x++;
if(op==)
{
Makeroot(n+); Access(x); Splay(x);
printf("%d\n",sz[ch[x][]]);
}
else
{
scanf("%d",&y);
Makeroot(n+); Access(x);
Cut(x,min(x+val[x],n+));
val[x]=y;
Link(x,min(x+val[x],n+));
}
}
return ;
}
[HNOI2010] 弹飞绵羊 bounce的更多相关文章
- P3203 [HNOI2010]弹飞绵羊(LCT)
P3203 [HNOI2010]弹飞绵羊 LCT板子 用一个$p[i]$数组维护每个点指向的下个点. 每次修改时cut*1+link*1就解决了 被弹出界时新设一个点,权为0,作为终点表示出界点.其他 ...
- [HNOI2010] 弹飞绵羊 (分块)
[HNOI2010] 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上 ...
- 洛谷 P3203 [HNOI2010]弹飞绵羊 解题报告
P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...
- [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree)
[BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree) 题面 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一 ...
- 「洛谷P3202」[HNOI2010]弹飞绵羊 解题报告
P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...
- [Luogu P3203] [HNOI2010]弹飞绵羊 (LCT维护链的长度)
题面 传送门:洛谷 Solution 这题其实是有类似模型的. 我们先考虑不修改怎么写.考虑这样做:每个点向它跳到的点连一条边,最后肯定会连成一颗以n+1为根的树(我们拿n+1代表被弹出去了).题目所 ...
- P3203 [HNOI2010]弹飞绵羊 —— 懒标记?分块?LCT?...FAQ orz
好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏 ...
- P3203 [HNOI2010]弹飞绵羊 —— 懒标记?分块?
好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏 ...
- 洛谷P3203 [HNOI2010] 弹飞绵羊 [LCT]
题目传送门 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...
随机推荐
- android:PopupWindow的使用场景和注意事项
1.PopupWindow的特点 借用Google官方的说法: "A popup window that can be used to display an arbitrary view. ...
- [Cocoa]深入浅出Cocoa之Bonjour网络编程
本文转载至 http://www.cnblogs.com/kesalin/archive/2011/09/15/cocoa_bonjour.html 深入浅出Cocoa之Bonjour网络编程 罗 ...
- SAM4E单片机之旅——5、LED呼吸和PWM
PWM在高频情况下,一个很好的用处就是通过控制占空比来控制输出的功率,比如控制风扇转速.LED灯的亮度等.这次就利用PWM的中断功能,动态改变脉冲的占空比,来实现呼吸灯的效果. 一.实现思路 PWM可 ...
- 超实用的 Nginx 极简教程,覆盖了常用场景(转)
概述 安装与使用 安装 使用 nginx 配置实战 http 反向代理配置 负载均衡配置 网站有多个 webapp 的配置 https 反向代理配置 静态站点配置 搭建文件服务器 跨域解决方案 参考 ...
- C++编程规范纲要要点小结
这是一本好书, 可以让你认清自己对C++的掌握程度. 看完之后,给自己打分,我对C++了解多少? 答案是不足20分. 对于我自己是理所当然的问题, 就不提了, 记一些有启发的条目和细节: (*号表示不 ...
- 【智能无线小车系列八】在树莓派上使用USB网卡
在这个腾“云”驾“物”(云:云计算,物:物联网)的时代,什么都可以没有,就是不能没有网络,树莓派也离不开它.本章节将详细介绍如何将树莓派接入互联网,因为有一些后期将要使用到的小软件需要联网进行下载和安 ...
- eclipse 中PlantUML的安装和使用
安装: 填写的地址:http://hallvard.github.io/plantuml/ 安装完plantUML后,还要下载一个Graphviz https://pan.baidu.com/s/1g ...
- Java WebService一个构建
参考:http://dyygusi.iteye.com/blog/2148029 下面是自己的实践路线,
- Linux下直接读写物理地址内存
虚拟 转 物理地址 virt_to_phys( *addr );物理 转 虚拟地址 phys_to_virt( *addr ); 如: unsigned long pProtectVA; phys ...
- user版本如何永久性开启adb 的root权限【转】
本文转载自:http://blog.csdn.net/o0daxu0o/article/details/52933926 [Solution]* adb 的root 权限是在system/core/a ...