POJ 3264 Balanced Lineup RMQ ST算法
题意:有n头牛,编号从1到n,每头牛的身高已知。现有q次询问,每次询问给出a,b两个数。要求给出编号在a与b之间牛身高的最大值与最小值之差。
思路:标准的RMQ问题。
RMQ问题是求给定区间内的最值问题。当询问量巨大时,最朴素算法必然超时。解决RMQ比较优秀的算法有ST算法。其预处理时间复杂度为O(nlogn),询问的时间复杂度为O(1)。
ST的思想如下:
假设num数组中的数据从第0位开始存储。
用两个二维数组tmax,tmin分别求区间最大与最小值。ST的关键是数组区间的分割。tmax和tmin的下标是一致的,暂且拿tmax举例。
预处理:
预处理阶段运用的是DP的思想。tmax[i][j]内的值为区间[i, i + 2^j - 1]内的最大值。可以方便地理解为:第一个下标i为区间的开始位置,第二个坐标j表示区间的长度(只不过长度为指数形式)。如tmax[2][1]表示的是区间[2, 3]的最大值,tmax[2][2]表示的是区间[2, 5]的最大值。
而区间[i, i + 2^j - 1]可拆成[i, i + 2^(j - 1) - 1]和[i + 2^(j - 1), i + 2^j - 1]两个子区间。因此要计算tmax[i][j]的值,则有tmax[i][j] = max(tmax[i][j-1], tmax[i+2^(j-1)][j-1])。而所有递推的最初值tmax[i][0] = num[i]。对于tmin数组,下标的表示规则是相同的。
查询:
预处理进行完之后,可以进行查询。查询的复杂度为O(1)。
假设要查询区间[i, j]内的最大值。
首先第一步,先计算出一个整数k,k为满足表达式i + 2^k - 1 <= j 的最大整数。
然后将区间[i, j]分成两个部分重叠的子区间:[i, i + 2^k - 1]与[j - 2^k + 1, j]。
而tmax[i][k] 与tmax[j-2^k+1][k]中在预处理阶段便已计算出了结果,此时只需要输出两者中的较大者即可。
其他细节请看代码。
#include<stdio.h>
#include<math.h>
#include<algorithm>
#define maxn 50020
using namespace std; int cow[maxn], tmax[maxn][], tmin[maxn][];
void st(int n)
{
int k = (int)(log((double)n) / log(2.0));
for (int i = ; i < n; i++)
tmin[i][] = tmax[i][] = cow[i];//递推的初值
for (int j = ; j <= k; j++)
for (int i = ; i + ( << j) - < n; i++)
{
int m = i + ( << (j - ));//求出中间值
tmax[i][j] = max(tmax[i][j-], tmax[m][j-]);
tmin[i][j] = min(tmin[i][j-], tmin[m][j-]);
}
}
//查询i和j之间的最值,注意i是从0开始的
void rmq(int i, int j)
{
int k = (int)(log(double(j - i + )) / log(2.0));
int t1 = max(tmax[i][k], tmax[j-(<<k)+][k]);
int t2 = min(tmin[i][k], tmin[j-(<<k)+][k]);
printf("%d\n",t1 - t2);
}
int main()
{
int n, q;
//freopen("data.in", "r", stdin);
scanf("%d%d",&n,&q);
for (int i = ; i < n; i++) scanf("%d",&cow[i]);
st(n);
while (q--)
{
int a, b;
scanf("%d%d",&a,&b);
rmq(a - , b - );//st算法从第0位开始,因此需要减一
}
return ;
}
POJ 3264 Balanced Lineup RMQ ST算法的更多相关文章
- Poj 3264 Balanced Lineup RMQ模板
题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...
- POJ 3264 Balanced Lineup 【ST表 静态RMQ】
传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total S ...
- poj 3264 Balanced Lineup (RMQ)
/******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...
- [POJ3264]Balanced Lineup(RMQ, ST算法)
题目链接:http://poj.org/problem?id=3264 典型RMQ,这道题被我鞭尸了三遍也是醉了…这回用新学的st算法. st算法本身是一个区间dp,利用的性质就是相邻两个区间的最值的 ...
- POJ - 3264 Balanced Lineup (RMQ问题求区间最值)
RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就 ...
- poj 3264 Balanced Lineup (RMQ算法 模板题)
RMQ支持操作: Query(L, R): 计算Min{a[L],a[L+1], a[R]}. 预处理时间是O(nlogn), 查询只需 O(1). RMQ问题 用于求给定区间内的最大值/最小值问题 ...
- POJ 3264 Balanced Lineup(ST模板)
链接:http://poj.org/problem?id=3264 题意:给n个数,求一段区间L,R的最大值 - 最小值,Q次询问 思路:ST表模板,预处理区间最值,O(1)复杂度询问 AC代码: # ...
- POJ 3264 Balanced Lineup -- RMQ或线段树
一段区间的最值问题,用线段树或RMQ皆可.两种代码都贴上:又是空间换时间.. RMQ 解法:(8168KB 1625ms) #include <iostream> #include < ...
- [POJ] 3264 Balanced Lineup [ST算法]
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 34306 Accepted: 16137 ...
随机推荐
- JMX浅谈
一 JMX 是什么? JMX(Java Management Extensions,即Java管理扩展) JMX在Java编程语言中定义了应用程序以及网络管理和监控的体系结构.设计模式.应用程序接口以 ...
- 一次失败的刷题经历:[LeetCode]292之尼姆游戏(Nim Game)
最近闲来无事刷LeetCode,发现这道题的Accept Rate还是挺高的,尝试着做了一下,结果悲剧了,把过程写下来,希望能长点记性.该题的描述翻译成中文如下: 你正在和你的朋友玩尼姆游戏(Nim ...
- N宫格
<!doctype html> <html> <head> <meta charset="utf-8"> <meta name ...
- 步骤详解安装Apache web服务器
1.在上右键è安装 安装后apache web服务器自动启动. 在右下角出现. Apache安装之后有一个默认的网站目录 在浏览器上通过网站就可以访问到该目录下的文件. 2.测试 在浏览器输上请求lo ...
- VMware Fusion Pro安装Ubuntu 18.04.1
- 我爱学 Python 之文件
读取文件 假设你已经在某个文件夹下创建了 "test.txt" 文件,且里面有一些内容,那你在当前位置输入 Python3,进入到交互模式,然后执行下面的操作: >>& ...
- redis设置最大内存上限对置换策略的解读
现在很少服务器还在使用32位的操作系统了,所以服务器的内存可以接近极限2^64的字节.redis配置文件中有限制最大内存的字段maxmemory,当redis的key达到最大值时,redis会有多种策 ...
- c++ 中double与string之间的转换,char *
运行代码为 /* * main.cpp * * Created on: Apr 7, 2016 * Author: lizhen */ #include <iostream> //#inc ...
- 给出 中序&后序 序列 建树;给出 先序&中序 序列 建树
已知 中序&后序 建立二叉树: SDUT 1489 Description 已知一棵二叉树的中序遍历和后序遍历,求二叉树的先序遍历 Input 输入数据有多组,第一行是一个整数t (t& ...
- socket传输对象
server public class Server{ private static int port = 8888; private static ServerSocket serverSocket ...