证明:

如果n是素数,整数$a$ 与$n$ 互素,即$n$ 不整除$a$ ,则${a^{n - 1}} \equiv 1(\bmod n)$ ,如果能找到一个与$n$ 互素的整数$a$ ,是的上式不成立,则可以断定$n$ 是合数,反之则不成立,这类合数我们称之为Carmichael数。当上式成立时,称$n$ 为以$a$ 为底的伪素数。

以上测试素数的方法称为fermat测试。

Miller-Rabin素性检验是在上面的基础上加上一个二次探测定理。

强伪素数:设$n - 1 = {2^s}t$ ,$2\nmid t$ ,$b$ 与$n$ 互素。若${b^t} \equiv 1(\bmod n)$ 或存在$r$ , $0 \le r \le s$ 使得${b^{{2^r}t}} \equiv - 1(\bmod n)$ ,则称n为以b为底的强伪素数。

当$n$ 为素数时,他一定是从任何数$b$ 为基的强伪素数,以$b$为基的强伪素数一定是以$b$为基的伪素数。

二次探测定理:如果p是奇素数,则 ${x^2} \equiv 1(\bmod p)$ 的解为$x \equiv 1$ 或 $x \equiv p - 1(\bmod p)$

如果${a^{n - 1}} \equiv 1(\bmod n)$成立,Miller-Rabin算法不是立即找另一个$a$进行测试,而是看$n-1$ 是不是偶数。如果$n-1$ 是偶数,另$u = \frac{{n - 1}}{2}$,并检查是否满足二次探测定理即${a^u} \equiv 1$或${a^u} \equiv n - 1(\bmod n)$。若不满足,则为合数。

定理:若n是奇合数,则在区间$0 < b < n$ 中,最多有25%的数$b$ ,能使$n$ 是以$b$ 为基的强伪素数。

所以,结果的正确率为$1 - \frac{1}{{{4^k}}}$

复杂度:$O(S\log n)$

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<iostream>
#include<cmath>
typedef long long ll;
using namespace std;
const int S=;
ll mod_mul(ll a,ll b,ll p){
ll res=;
a%=p,b%=p;
while(b){
if(b&)res=(res+a)%p;
a=(a<<)%p;
b>>=;
}
return res;
}
ll mod_pow(ll x,ll n,ll p){
ll res=;
while(n){
if(n&)res=mod_mul(res,x,p);
x=mod_mul(x,x,p);
n>>=;
}
return res;
} bool check(ll a,ll n,ll x,ll t){//判断是否为合数
ll ret=mod_pow(a,x,n);
ll last=ret;
for(int i=;i<=t;i++){
ret=mod_mul(ret,ret,n);
if(ret==&&last!=&&last!=n-)return ;
last=ret;
}
if(ret!=) return ;//fermat测试
return ;
} bool Miller_Rabin(ll n){
if(n<)return ;
if(n==)return ;
if((n&)==)return ;
ll x=n-,t=;
while((x&)==)x>>=,t++;
for(int i=;i<S;i++){
ll a=rand()%(n-)+;
if(check(a,n,x,t))return ;//合数
}
return ;
} int main(){
ll t,n;
scanf("%lld",&t);
while(t--){
scanf("%lld",&n);
if(Miller_Rabin(n))printf("Yes\n");
else printf("No\n");
}
return ;
}

[hiho第92周]Miller-Rabin素性测试的c++实现的更多相关文章

  1. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  2. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  4. 米勒罗宾素性测试(Miller–Rabin primality test)

    如何判断一个素是素数 效率很高的筛法 打个表 (素数的倍数一定是合数) 就可以解决问题. 筛选法的效率很高,但是遇到大素数就无能为力了. 米勒罗宾素性测试是一个相当著名的判断是否是素数的算法 核心为费 ...

  5. 与数论的厮守01:素数的测试——Miller Rabin

    看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...

  6. 素数与素性测试(Miller-Rabin测试)

    转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...

  7. 【数学】【筛素数】Miller-Rabin素性测试 学习笔记

        Miller-Rabin是一种高效的随机算法,用来检测一个数$p$是否是素数,最坏时间复杂度为$\log^3 p$,正确率约为$1-4^{-k}$,$k$是检验次数. 一.来源     Mil ...

  8. Miller-Rabin 素性测试 与 Pollard Rho 大整数分解

    \(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...

  9. miller_rabin_素性测试

    摘自:http://blog.csdn.net/pi9nc/article/details/27209455 看了好久没看懂,最后在这篇博客中看明白了. 费马定理的应用,加上二次探测定理. Ferma ...

随机推荐

  1. SQL ROW_NUMBER() 分页使用示例

    ALTER PROC [dbo].[TestProPage] , AS BEGIN SELECT * FROM (SELECT *,ROW_NUMBER() OVER(ORDER BY IndexID ...

  2. 限制UITextView的字数和字数监控,表情异常的情况和禁用表情

    限制UITextView的字数和字数监控,表情异常的情况和禁用表情   3523FD80CC4350DE0AE7F89A8532B9A8.png 因为字数占一个字符,表情占两个字符.你要是限制15个字 ...

  3. 【BZOJ4200】[Noi2015]小园丁与老司机 DP+最小流

    [BZOJ2839][Noi2015]小园丁与老司机 Description 小园丁 Mr. S 负责看管一片田野,田野可以看作一个二维平面.田野上有 nn 棵许愿树,编号 1,2,3,…,n1,2, ...

  4. 【oracle案例】ORA-01102: cannot mount database in EXCLUSIVE mode

    ORA-01102: cannot mount database in EXCLUSIVE mode 今天在fedora上安装完10g后,测试数据库是否安装成功.STARTUP数据库时,发生如下错误: ...

  5. 九度OJ 1073:杨辉三角形 (递归)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3780 解决:1631 题目描述: 输入n值,使用递归函数,求杨辉三角形中各个位置上的值. 输入: 一个大于等于2的整型数n 输出: 题目可 ...

  6. 不依赖外部js es 库 实现 点击内容 切换

    <!DOCTYPE html> <html lang="zh-cmn-Hans"> <head> <meta http-equiv=&qu ...

  7. Tomcat学习笔记【2】--- Tomcat安装、环境变量配置、启动和关闭

    本文主要讲Tomcat的安装和配置. 一 Tomcat安装 1.1 下载 下载地址:http://tomcat.apache.org/ 1.2 安装 Tomcat是不需要安装的,解压压缩包即可. 在安 ...

  8. ExtJS教程(5)---Ext.data.Model之高级应用

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/jaune161/article/details/37391399 1.Model的数据验证 这里借助 ...

  9. IOS 状态栏 显示与隐藏网络活动状态

    IOS中显示和隐藏状态栏的网络活动标志 //在向服务端发送请求状态栏显示网络活动标志: [[UIApplication sharedApplication] setNetworkActivityInd ...

  10. HDU 1201 Fibonacci Again

    Fibonacci Again Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...