BZOJ1003物流運輸 DP + SPFA
@[DP, SPFA]
Description
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要\(n\)天才能运完。货物运输过程中一般要转
停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种
因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是
修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个\(n\)天的运输计划,使得总成本
尽可能地小。
Input
第一行是四个整数\(n(1 <= n <= 100)\)、\(m(1 <= m <= 20)\)、K和e。n表示货物运输所需天数,m表示码头总数,K表示
每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编
号以及航线长度\((>0)\)。其中码头A编号为1,码头B编号为\(m\)。单位长度的运输费用为1。航线是双向的。再接下来
一行是一个整数d,后面的d行每行是三个整数P\(( 1 < P < m)\)、\(a\)、\(b\)\((1< = a < = b < = n)\)。表示编号为P的码
头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一
条从码头A到码头B的运输路线。
Output
包括了一个整数表示最小的总成本。
\]
Sample Input
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
Sample Output
32
Solution
傻題...
看起來很可怕, 然而數據範圍實在是良心...
SPFA + 暴力 + DP即可
暴力枚举第\(i\)天到第\(j\)天(不改线路)的最小费用
然後DP
\]
这样也能过……
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#include<climits>
using namespace std;
inline int read()
{
int x = 0, flag = 1;;
char c;
while(! isdigit(c = getchar()))
if(c == '-')
flag *= - 1;
while(isdigit(c))
x = x * 10 + c - '0', c = getchar();
return x * flag;
}
void println(int x)
{
if(x < 0)
putchar('-'), x *= - 1;
if(x == 0)
putchar('0');
int ans[10], top = 0;
while(x)
ans[top ++] = x % 10, x /= 10;
for(; top; top --)
putchar(ans[top - 1] + '0');
putchar('\n');
}
const int N = 1 << 7, M = 1 << 5, E = M * M;
int top;
int head[M];
struct Edge
{
int v, w, next;
}G[E << 1];
void add_edge(int u, int v, int w)
{
G[top].v = v, G[top].w = w, G[top].next = head[u];
head[u] = top ++;
}
const int D = N * M;
struct Modi
{
int p, L, R;
}oper[D];
int flag[M];
int Q[M * E];
int dis[M];
int inQ[M];
int SPFA(int s, int t)
{
Q[0] = s;
int L = 0, R = 1;
memset(dis, 127, sizeof(dis));
dis[s] = 0;
memset(inQ, 0, sizeof(inQ));
while(L < R)
{
for(int i = head[Q[L]]; i != - 1; i = G[i].next)
if(dis[Q[L]] + G[i].w < dis[G[i].v] && ! flag[G[i].v])
{
dis[G[i].v] = dis[Q[L]] + G[i].w;
if(! inQ[G[i].v])
inQ[G[i].v] = 1, Q[R ++] = G[i].v;
}
inQ[Q[L ++]] = 0; //忘了標記出隊, 結果調試了將近一個小時..還要上極限數據才發現錯誤
}
if(dis[t] > (int)2e9)
return - 1;
return dis[t]; //漏了這一句, 結果調完了剩下的整個晚上QAQ
}
int cost[N][N];
int f[N];
const int oo = INT_MAX;
int main()
{
#ifndef ONLINE_JUDGE
freopen("BZOJ1003.in", "r", stdin);
freopen("BZOJ1003.out", "w", stdout);
#endif
int n = read(), m = read(), K = read(), e = read();
top = 0;
memset(head, - 1, sizeof(head));
for(int i = 0; i < e; i ++)
{
int u = read(), v = read(), w = read();
add_edge(u, v, w);
add_edge(v, u, w);
}
int d = read();
for(int i = 0; i < d; i ++)
oper[i].p = read(), oper[i].L = read(), oper[i].R = read();
for(int i = 1; i <= n; i ++)
for(int j = i; j <= n; j ++)
{
memset(flag, 0, sizeof(flag));
for(int k = 0; k < d; k ++)
if(oper[k].L <= j && oper[k].R >= i)
flag[oper[k].p] = 1;
cost[i][j] = SPFA(1, m);
}
memset(f, 127, sizeof(f));
f[0] = 0;
for(int i = 1; i <= n; i ++)
for(int j = 0; j < i; j ++)
{
if(cost[j + 1][i] == - 1)
continue;
f[i] = min(f[i], cost[j + 1][i] * (i - j) + f[j] + K);
}
println(f[n] - K);
}
BZOJ1003物流運輸 DP + SPFA的更多相关文章
- bzoj1003: [ZJOI2006]物流运输(DP+spfa)
1003: [ZJOI2006]物流运输 题目:传送门 题解: 可以用spfa处理出第i天到第j都走这条路的花费,记录为cost f[i]表示前i天的最小花费:f[i]=min(f[i],f[j-1] ...
- bzoj 1003物流运输 区间dp+spfa
基本思路: 一开始确实没什么思路,因为觉得怎么着都会超时,然后看一下数据范围,呵,怎么都不会超时. 思路: 1.看到能改变线路,想到可以用以下区间dp,区间dp的话,先枚举长度,枚举开始位置,然后枚举 ...
- [luoguP1772] [ZJOI2006]物流运输(DP + spfa)
传送门 预处理cost[i][j]表示从第i天到第j天起点到终点的最短距离 f[i]表示前i天到从起点到终点的最短距离 f[0] = -K f[i] = min(f[i], f[j - 1] + co ...
- bzoj1003物流运输 最短路+DP
bzoj1003物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输 ...
- 值得一做》关于一道DP+SPFA的题 BZOJ1003 (BZOJ第一页计划) (normal-)
这是一道数据范围和评测时间水的可怕的题,只是思路有点难想,BUT假如你的思路清晰,完全了解怎么该做,那就算你写一个反LLL和反SLE都能A,如此水的一道题,你不心动吗? 下面贴出题目 Descript ...
- POJ 3182 The Grove [DP(spfa) 射线法]
题意: 给一个地图,给定起点和一块连续图形,走一圈围住这个图形求最小步数 本来是要做课件上一道$CF$题,先做一个简化版 只要保证图形有一个点在走出的多边形内就可以了 $hzc:$动态化静态的思想,假 ...
- HDU 4085 Peach Blossom Spring 斯坦纳树 状态压缩DP+SPFA
状态压缩dp+spfa解斯坦纳树 枚举子树的形态 dp[i][j] = min(dp[i][j], dp[i][k]+dp[i][l]) 当中k和l是对j的一个划分 依照边进行松弛 dp[i][j] ...
- BZOJ-1003 物流运输trans SPFA+DP
傻逼错误耗我1h,没给全范围坑我1A.... 1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec Memory Limit: 162 MB Submit: 529 ...
- BZOJ 1003 物流运输 题解 【SPFA+DP】
BZOJ 1003 物流运输 题解 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的 ...
随机推荐
- Divisibility by 25 CodeForces - 988E
You are given an integer nn from 11 to 10181018 without leading zeroes. In one move you can swap any ...
- Flask-用户角色及权限
app/models.py class Role(db.Model): __tablename__ = 'roles' id = db.Column(db.Integer, primary_key=T ...
- HDU 5396 区间DP 数学 Expression
题意:有n个数字,n-1个运算符,每个运算符的顺序可以任意,因此一共有 (n - 1)! 种运算顺序,得到 (n - 1)! 个运算结果,然后求这些运算结果之和 MOD 1e9+7. 分析: 类比最优 ...
- IDEA字体颜色快速导入辅助工具设置
原创链接:https://www.cnblogs.com/ka-bu-qi-nuo/p/9181954.html 程序员开发大多数都是使用IDE进行代码开发的,这样能快速的开发出需要的项目.之前一直 ...
- asp.net多线程在web页面中简单使用
需求:一个web页面 default.aspx 里面有两个控件GridView1,GridView2,通过两个线程分别加载绑定数据. 绑定GridView1:void BindCategory() ...
- Python3下基于bs4和sqlalchemy的爬虫实现
本文来自网易云社区 作者:王贝 小学生现在都在学python了,作为专业程序员当然不能落下了,所以,快马加鞭,周六周末在家学起了python3,python3的基本语法比较简单,相比于Java开发更加 ...
- 编译参数-ObjC的说明
一些第三方库里对系统库的类加了 category , 这时,就需要使用编译参数: -ObjC ,这样第三方库中对系统类作的扩展方法才能在工程中使用. 但是使用 -Objc 后,会产生两个问题: 1 . ...
- 反射的妙用-类名方法名做参数进行方法调用实例demo
首先声明一点,大家都会说反射的效率低下,但是大多数的框架能少了反射吗?当反射能为我们带来代码上的方便就可以用,如有不当之处还望大家指出 1,项目结构图如下所示:一个ClassLb类库项目,一个为测试用 ...
- 浮动 float
1.未设浮动属性,位于标准流中 2.如果设置浮动属性,则容器不再位于标准流中,不再占用空间.容器会根据内容确定宽度 3.尽量将搜索引擎要搜索的内容放到网页的前部,更要容易排名到 4.clear属性清除 ...
- [python IO学习篇]补充打开中文路径的文件
http://blog.csdn.net/mottolinux/article/details/525600621 关于Python编码的基本常识 在python里面 “明文”是unicode类型和s ...