AC日记——[福利]可持久化线段树 cogs 2554
2554. [福利]可持久化线段树
★★☆ 输入文件:longterm_segtree.in 输出文件:longterm_segtree.out 简单对比
时间限制:3 s 内存限制:256 MB
【题目描述】
为什么说本题是福利呢?因为这是一道非常直白的可持久化线段树的练习题,目的并不是虐人,而是指导你入门可持久化数据结构。
线段树有个非常经典的应用是处理RMQ问题,即区间最大/最小值询问问题。现在我们把这个问题可持久化一下:
Q k l r 查询数列在第k个版本时,区间[l, r]上的最大值
M k p v 把数列在第k个版本时的第p个数修改为v,并产生一个新的数列版本
最开始会给你一个数列,作为第1个版本。
每次M操作会导致产生一个新的版本。修改操作可能会很多呢,如果每次都记录一个新的数列,空间和时间上都是令人无法承受的。所以我们需要可持久化数据结构:

对于最开始的版本1,我们直接建立一颗线段树,维护区间最大值。
修改操作呢?我们发现,修改只会涉及从线段树树根到目标点上一条树链上logn个节点而已,其余的节点并不会受到影响。所以对于每次修改操作,我们可以只重建修改涉及的节点即可。就像这样:

需要查询第k个版本的最大值,那就从第k个版本的树根开始,像查询普通的线段树一样查询即可。
要计算好所需空间哦
【输入格式】
第一行两个整数N, Q。N是数列的长度,Q表示询问数
第二行N个整数,是这个数列
之后Q行,每行以0或者1开头,0表示查询操作Q,1表示修改操作M,格式为
0 k l r 查询数列在第k个版本时,区间[l, r]上的最大值 或者
1 k p v 把数列在第k个版本时的第p个数修改为v,并产生一个新的数列版本
【输出格式】
对于每个M询问,输出正确答案
【样例输入】
4 5
1 2 3 4
0 1 1 4
1 1 3 5
0 2 1 3
0 2 4 4
0 1 2 4
【样例输出】
4
5
4
4
【提示】
样例解释
序列版本1: 1 2 3 4
查询版本1的[1, 4]最大值为4
修改产生版本2: 1 2 5 4
查询版本2的[1, 3]最大值为5
查询版本1的[4, 4]最大值为4
查询版本1的[2, 4]最大值为4
数据范围
N <= 10000 Q <= 100000
对于每次询问操作的版本号k保证合法,
区间[l, r]一定满足1 <= l <= r <= N
【来源】
lj出题人: sxysxy。原题见: http://syzoj.com/problem/247
思路:
这个,裸模板呀;
来,上代码:
#include <cstdio>
#include <iostream> #define maxn 40005 using namespace std; struct TreeNodeType {
int lc,rc,dis;
};
struct TreeNodeType tree[maxn*]; int if_z,n,q,root[maxn*],cnt,tot,li,ri; char Cget; inline void in(int &now)
{
now=,if_z=,Cget=getchar();
while(Cget>''||Cget<'')
{
if(Cget=='-') if_z=-;
Cget=getchar();
}
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
now*=if_z;
return ;
} void tree_build(int &now,int l,int r)
{
now=++tot;
if(l==r)
{
in(tree[now].dis);
return ;
}
int mid=(l+r)>>;
tree_build(tree[now].lc,l,mid);
tree_build(tree[now].rc,mid+,r);
if(tree[tree[now].lc].dis>tree[tree[now].rc].dis) tree[now].dis=tree[tree[now].lc].dis;
else tree[now].dis=tree[tree[now].rc].dis;
} void tree_add(int pre,int &now,int l,int r)
{
now=++tot;
if(l==r)
{
tree[now].dis=ri;
return ;
}
int mid=(l+r)>>;
if(li<=mid)
{
tree_add(tree[pre].lc,tree[now].lc,l,mid);
tree[now].rc=tree[pre].rc;
}
else
{
tree_add(tree[pre].rc,tree[now].rc,mid+,r);
tree[now].lc=tree[pre].lc;
}
if(tree[tree[now].lc].dis>tree[tree[now].rc].dis) tree[now].dis=tree[tree[now].lc].dis;
else tree[now].dis=tree[tree[now].rc].dis;
} int tree_query(int now,int l,int r)
{
if(l>=li&&r<=ri) return tree[now].dis;
int mid=(l+r)>>;
if(li>mid) return tree_query(tree[now].rc,mid+,r);
else if(ri<=mid) return tree_query(tree[now].lc,l,mid);
else return max(tree_query(tree[now].lc,l,mid),tree_query(tree[now].rc,mid+,r));
} int main()
{
freopen("longterm_segtree.in","r",stdin);
freopen("longterm_segtree.out","w",stdout);
in(n),in(q);
tree_build(root[++cnt],,n);
int type,k;
while(q--)
{
in(type);
if(type)
{
in(k),in(li),in(ri);
tree_add(root[k],root[++cnt],,n);
}
else
{
in(k),in(li),in(ri);
printf("%d\n",tree_query(root[k],,n));
}
}
return ;
}
AC日记——[福利]可持久化线段树 cogs 2554的更多相关文章
- cogs 2554. [福利]可持久化线段树
题目链接 cogs 2554. [福利]可持久化线段树 题解 没有 代码 #include<cstdio> #include<cstring> #include<algo ...
- cogs2554 [福利]可持久化线段树
cogs2554 [福利]可持久化线段树 原题链接 每次修改复制一遍就行了... 1A!!! // It is made by XZZ #include<cstdio> #include& ...
- YSZOJ:#247. [福利]可持久化线段树 (最适合可持久化线段树入门)
题目链接:https://syzoj.com/problem/247 解题心得: 可持久化线段树其实就是一个线段树功能的加强版,加强在哪里呢?那就是如果一颗普通的线段树多次修改之后还能知道最开始的线段 ...
- [COGS2554][SYZOJ247][福利]可持久化线段树
思路: 主席树模板. 注意内存的分配,原始的线段树有$2n$个结点,每次更新时最多增加$log(n)$个结点,总共有$q$次询问,所以存储结点的数组大小为$2N+q log(n)$. #include ...
- AC日记——【模板】线段树 2 洛谷 P3373
P3373 [模板]线段树 2387通过1.8K提交标签难度 提高+/省选- 提交 讨论 题解 最新讨论 更多讨论 2333最后三个点卡常数.迷之RE感觉这题很迷啊好像一共三组测试数据.友情提示:开l ...
- AC日记——【模板】线段树 1 洛谷 P3372
题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个 ...
- 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集
3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 1878 Solved: 846[Submit][Status ...
- Tsinsen A1505. 树(张闻涛) 倍增LCA,可持久化线段树,DFS序
题目:http://www.tsinsen.com/A1505 A1505. 树(张闻涛) 时间限制:1.0s 内存限制:512.0MB 总提交次数:196 AC次数:65 平均分: ...
- BZOJ 3221: [Codechef FEB13] Obserbing the tree树上询问( 可持久化线段树 + 树链剖分 )
树链剖分+可持久化线段树....这个一眼可以看出来, 因为可持久化所以写了标记永久化(否则就是区间修改的线段树的持久化..不会), 结果就写挂了, T得飞起...和管理员拿数据调后才发现= = 做法: ...
随机推荐
- Python基础-面向对象初识--类
什么是类 具有相似功能和属性的一类实物 什么是对象 类的具体体现,具体到一个 面向对象的优势 1.类是一组相似功能的集合,使组织结构更加清晰和规范化 2.研究面向对象要有上帝的思维,用面向对象设计程序 ...
- supervisor 安装使用
简介 Supervisor是用Python开发的一套通用的进程管理程序,能将一个普通的命令行进程变为后台daemon,并监控进程状态,异常退出时能自动重启.它是通过fork/exec的方式把这些被管 ...
- Django之用户认证
用户认证组件简介 功能:用session记录登录验证状态 前提:必须使用django自带的auth_user表.那这里有的同学就会有疑问了,自己不能创建自己的用户表吗? 当然可以,用户认证组件虽然只针 ...
- c++,友元类和友元函数
都是声明时友元的东西可以访问自己类的私有和保护成员 类的友元 友元是C++提供的一种破坏数据封装和数据隐藏的机制. 通过将一个模块声明为另一个模块的友元,一个模块能够引用到另一个模块中本是被隐藏的信息 ...
- JAVA中变量的类型及命名规范
1. 计算机是一种极度精确的机器;2. 要将信息存储在计算机当中,就必须指明信息存储的位置和所需的内存空间;3. 在JAVA编程语言当中,使用声明语句来完成上述的任务; 4. 变量的类型: 5. 变量 ...
- 【Netty】Netty入门之WebSocket小例子
服务端: 引入Netty依赖 <!-- netty --> <dependency> <groupId>io.netty</groupId> <a ...
- [转] 彻底搞懂word-break、word-wrap、white-space
white-space.word-break.word-wrap(overflow-wrap)估计是css里最基本又最让人迷惑的三个属性了,我也是用了n次都经常搞混,必须系统整理一下,今天我们就把这三 ...
- Java项目引入eclipse注意事项
我以前也搞过java,后转前端,接触html+css+js时间比较多,所以java后端也忘了差不多.最近负责公司的邮件系统项目,项目是java语言写,项目架构比较复杂,在部署项目的时候,遇到了很多问题 ...
- python week08 并发编程之多线程--理论部分
一. 什么是线程 1.定义 线程就像一条工厂车间里的流水线,一个车间里可以用很多流水线,来执行生产每个零部件的任务. 所以车间可以看作是进程,流水线可以看作是线程.(进程是资源单位,线程是执行单位) ...
- wordpress 使用wp_head()函数
wp_head()的作用: 在WordPress主题中使用此函数控制<head>…</head>之间的标签内容. 以通过header.php模板文件输出html中的head标签 ...