DP玄学优化——斜率优化
——以此博客来悼念我在\(QBXT\)懵逼的时光
\(rqy\; tql\) (日常%\(rqy\))
概念及用途
斜率优化是\(DP\)的一种较为常用的优化(据说在高中课本里稍有提及),它可以用于优化这样的一种\(DP\)式子
\[dp[i]=a[i]+\max(y_j-k_ix_j)\;\;\; j\in[1,i-1]\]
原理
以下均以上面的\(DP\)方程为例
如果我们将上式中的\((x_j,y_j)\)画到坐标系里,然后画一条斜率为\(k_i\)的直线,则这条直线为的方程为\(y=k_ix+(y_j-k_ix_j)\),所以\(y_j-k_ix_j\)这一部分就是该直线的截距。所以在\(k_i\)确定的情况下,我们要求一个最大值,即该直线的斜率最大,那就相当于要找直线从上向下平移,所碰到的第一个点,这时,它的截距是最大的。
如果我们把这样的点筛出来,就能大大优化时间复杂度。
gif示意图
最后筛出来的点就是图中最后出现的红色点
当两个点在候选队列里,此时再加进来一个点,如果是这样的一种情况:
那我们可以把中间的那个点删去,因为删去它不会影响我们的最优解,他的截距显然要更大一些
如果是这样的一种情况
则三个点暂时全部保留,因为在某些时刻,它们都可能成为最优解
实现方式
我们可以用双端队列来处理,删掉不优的,加进去暂时较优的。在这只发一下代码中比较重要的部分吧
bool check(int a,int b,int c){
return (y(a)-y(c))*(x(b)-x(c))-(y(b)-y(c))*(x(a)-x(c))>=0;
}
/*
省略中间部分
*/
for(int i=1;i<=n;i++){
while(h<t&&y(q[h])-k(i)*x(q[h])<y(q[h+1])-k(i)*x(q[h+1])) h++;
dp[i]=(sum[i]-l)*(sum[i]-l)+y(q[h])-k(i)*x(q[h]);
while(h<t&&check(q[t-1],q[t],i)) t--;
q[++t]=i;
}
代码中的\(x\)函数、\(y\)函数、\(k\)函数、\(check\)函数请按需要更改,模板差不多就是这样了
例题
若果我们在输入时将所有的\(C_i\)和\(L+1\),原公式可以化为\((S-L)^2\)
用\(f_i\)表示前\(i\)个数的最小花费
\(f_i=min(f_j+(S_i-S_j-L)^2)\;\; 1 {<=}j{<=}i-1\)
\(f_i=min(f_j+(S_i-L)^2-2(S_i-L)S_j+S_j^2)\)
\(\;\;\;\;=(S_i-L)^2+min(y_j-k_ix_j)\)
\(y_j=f_j+S_j^2,k_i=2(S_i-L),x_j=S_j\)
所以我们就可用斜率优化来\(A\)掉这道题了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
int read(){
int k=0,f=1; char c=getchar();
for(;c<'0'||c>'9';c=getchar())
if(c=='-') f=-1;
for(;c>='0'&&c<='9';c=getchar())
k=(k<<3)+(k<<1)+c-48;
return k*f;
}
int n;
ll dp[50010],sum[50010],l;
inline ll x(int i){ return sum[i]; }
inline ll y(int i){ return dp[i]+sum[i]*sum[i]; }
inline ll k(int i){ return 2LL*(sum[i]-l); }
inline bool check(int a,int b,int c){
return (y(a)-y(c))*(x(b)-x(c))-(y(b)-y(c))*(x(a)-x(c))>=0;
}
ll q[100010],h=1,t=1;
int main(){
n=read(),l=read()+1;
for(int i=1;i<=n;i++) sum[i]=sum[i-1]+read()+1;
for(int i=1;i<=n;i++){
while(h<t&&y(q[h])-k(i)*x(q[h])>=y(q[h+1])-k(i)*x(q[h+1])) h++;
dp[i]=(sum[i]-l)*(sum[i]-l)+y(q[h])-k(i)*x(q[h]);
while(h<t&&check(q[t-1],q[t],i)) t--;
q[++t]=i;
}
cout<<dp[n];
return 0;
}
DP玄学优化——斜率优化的更多相关文章
- 牛客多校第10场J Wood Processing 分治优化/斜率优化 DP
题意:你有n块木头,每块木头有一个高h和宽w,你可以把高度相同的木头合并成一块木头.你可以选择一些木头消去它们的一部分,浪费的部分是 消去部分的高度 * 木头的宽度,问把n块木头变成恰好m块木头至少要 ...
- 【刷题笔记】DP优化-斜率优化
斜率优化,是一种利用斜率的优化(废话) 关于数论:咕咕咕 部分内容参考自学长 如果有这样的一个状态转移方程: \[f[i]=\min\limits_{j=L_j}^{R_j}\{f[j]+val(j, ...
- 「DP 浅析」斜率优化
#0.0 屑在前面 将结合经典例题 「HNOI2008」玩具装箱 以及 「NOI2007」货币兑换 进行讲解. #1.0 简述 #1.1 适用情况 斜率优化一般适用于状态转移方程如下的 DP \[f_ ...
- DP单调队列--斜率优化P3195
题意:https://www.luogu.com.cn/problem/P3195 思路:https://www.luogu.com.cn/problemnew/solution/P3195 #def ...
- 【学习笔记】动态规划—斜率优化DP(超详细)
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...
- 【BZOJ-1911】特别行动队 DP + 斜率优化
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 3478 Solved: 1586[Submit][Statu ...
- [luogu3628][bzoj1911][APIO2010]特别行动队【动态规划+斜率优化DP】
题目描述 给你一个数列,让你将这个数列分成若干段,使其每一段的和的\(a \times sum^2 + b \times sum + c\)的总和最大. 分析 算是一道斜率优化的入门题. 首先肯定是考 ...
- BZOJ 3437 小P的牧场(斜率优化DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...
- HDOJ 1300 Pearls 斜率优化dp
原题连接:http://acm.hdu.edu.cn/showproblem.php?pid=1300 题意: 题目太长了..自己看吧 题解: 看懂题目,就会发现这是个傻逼dp题,斜率优化一下就好 代 ...
随机推荐
- xml中运用js和jq
1.点击事件参数为this 一般<a>标签中会使用href和onclick两种方式来进行进行页面跳转或执行动作,但是小编一般都会使用onclick来进行执行Ajax函数进行跳转,并同时使用 ...
- MyBais中xxMap.xml中的知识点
添加新的mapper的时候下面两个标红的地方要注意,如果统一约定好命名的话都还好,但是就怕一会这样一会那样的业务代码:总之小心! <!-- spring与mybatis整合配置,扫描所有dao, ...
- JavaScript 对象的原型扩展(JS面向对象中的继承)
<script type="text/javascript"> function person(name, age) { this._name = name; this ...
- PostgreSQL-9-别名与动态表复制
1.列别名 SELECT column_name AS alias_name FROM table_name conditions... ; alias_name: 它指定分配给列的临时名称 SEL ...
- 相册选择头像或者拍照 上传头像以NSData 图片二进制格式 表单上传
一.点击头像图片 或者按钮 在相册选择照片返回img,网络上传头像要用data表单上传 (1)上传头像属性 // 图片二进制格式 表单上传 @property (nonatomic, strong) ...
- swiper 解决动态加载数据滑动失效的问题
两种解决方法 第一种解决办法: success:function(result){ var resultdata =eval("("+result+")"); ...
- 114 Flatten Binary Tree to Linked List 二叉树转换链表
给定一个二叉树,使用原地算法将它 “压扁” 成链表.示例:给出: 1 / \ 2 5 / \ \ 3 4 6压扁后变成如下: ...
- wireshark工具集
tshark 查看pcap文件第一个包的时间,当文件名不包含时间信息时非常有帮助 tshark -c 1 -T fields -e frame.time -r test.pcap dumpcap ed ...
- Sql Server 排序规则字符集的冲突问题
可通过如下sql 进行修改: 如果整个DB都不一致: Alter database Expense_Portal collate Chinese_PRC_CI_AS 某张Table的栏位不一致: ) ...
- react中的context的基础用法
context提供了一种数据共享的机制,里面有两个关键概念——provider,consumer,下面做一些key features描述. 参考网址:https://react.docschina.o ...