传送门

设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$

$$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rfloor\lfloor\frac{b}{n}\rfloor$$

根据莫比乌斯反演定理可以推出$$f(n)=\sum_{n|k}\mu(\lfloor\frac{k}{n}\rfloor)g(k)$$

那么可以发现$ans=f(d)$

然后用推出来的结论带进去

$$ans=\sum_{d|k}\mu(\lfloor\frac{k}{d}\rfloor)g(k)$$

枚举$\lfloor\frac{k}{d}\rfloor$设为$t$

$$ans=\sum_{t=1}^{min(\lfloor\frac{a}{d}\rfloor,\lfloor\frac{b}{d}\rfloor)}\mu(t)\lfloor\frac{a}{td}\rfloor\lfloor\frac{b}{td}\rfloor$$

对于$\lfloor\frac{a}{td}\rfloor\lfloor\frac{b}{td}\rfloor$相同的一段我们可以直接用前缀和算出答案

总而言之就是先预处理出$\mu$的前缀和然后用整除分块,那么每一次询问的复杂度就是$O(\sqrt{n})$

 //minamoto
#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=6e5+;
int p[N],mu[N],vis[N],m,sum[N];ll ans,lim;
void init(int n){
mu[]=;
for(int i=;i<=n;++i){
if(!vis[i]) mu[i]=-,p[++m]=i;
for(int j=;j<=m&&p[j]*i<=n;++j){
vis[i*p[j]]=;
if(i%p[j]==) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=;i<=n;++i) sum[i]=sum[i-]+mu[i];
}
int main(){
// freopen("testdata.in","r",stdin);
int n,m,T,d;scanf("%d",&T);
init();
while(T--){
scanf("%d%d%d",&n,&m,&d);ans=;
lim=min(n/d,m/d); for(int l=,r;l<=lim;l=r+){
r=min(n/(n/l),m/(m/l));
ans+=1ll*(n/(l*d))*(m/(l*d))*(sum[r]-sum[l-]);
}
printf("%lld\n",ans);
}
return ;
}

洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)的更多相关文章

  1. 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)

    题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...

  2. 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)

    题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...

  3. 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...

  4. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  5. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  6. 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)

    题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...

  7. BZOJ1101 POI2007 Zap 【莫比乌斯反演】

    BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...

  8. [洛谷P1390]公约数的和·莫比乌斯反演

    公约数的和 传送门 分析 这道题很显然答案为 \[Ans=\sum_{i=1}^n\sum_{j=i+1}^n (i,j)\] //其中\((i,j)\)意味\(gcd(i,j)\) 这样做起来很烦, ...

  9. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

随机推荐

  1. ubuntu安装opencv(自己编译)

    如果只需要python的,只需pip install opencv-python,然后apt-get一下下面第一点的东东. 1/ sudo apt-get install build-essentia ...

  2. Ruby JSON操作

      解析来我们就可以使用以下命令来安装Ruby JSON 模块: ? 1 $gem install json 使用 Ruby 解析 JSON 以下为JSON数据,将该数据存储在 input.json ...

  3. js 事件委托 bug 修复

    下面是html 内容: <ul id="oul"> <li>1</li> <li>2</li> <li>3& ...

  4. Cmder配置

    中文乱码和重叠 当我们使用ls命令查看文件目录时,发现,中文被显示成了一些奇怪的乱码,将以下几行代码配置在cmder/config/user-aliases下即可解决问题: l=ls --show-c ...

  5. smokeping 出现的问题

    Global symbol "%Config" requires explicit package name at /usr/lib64/perl5/lib.pm line 10. ...

  6. hdu 1002 A + B Problem II(大数)

    题意:就是求a+b (a,b都不超过1000位) 思路:用数组存储 第一道大数的题目,虽然很水,纪念一下! 代码: #include<cstdio> #include<cstring ...

  7. mybatis进行分页,使用limit

    这里记录两个思路: 首先是写一个不能执行的代码. <select id="query" parameterType="map" resultType=&q ...

  8. LinkedList_1.打印两个有序链表的公共部分

    思路: 实例化出两个链表($link_a, $link_b),比较连个链表当前元素的大小,谁小谁执行next()方法继续比较,当出现相当的时候把相等的值塞入数组$common里,当两个链表有一个元素比 ...

  9. WebP探索

    不同场景下WebP的使用方案总结:   App:Android4.0以上提供原生支持,其他版本使用官方提供的解析库(Android.iOS):   浏览器:JS能力检测,对支持 WebP 的用户输出 ...

  10. MySQL-with rollup函数运用 _20160930

    在博客里http://www.cnblogs.com/Mr-Cxy/p/5898839.html提到了行转列, 如果想在下面这个表下面添加一行 总计 数据行SQL代码怎么实现 并且根据9月金额进行城市 ...