传送门

设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$

$$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rfloor\lfloor\frac{b}{n}\rfloor$$

根据莫比乌斯反演定理可以推出$$f(n)=\sum_{n|k}\mu(\lfloor\frac{k}{n}\rfloor)g(k)$$

那么可以发现$ans=f(d)$

然后用推出来的结论带进去

$$ans=\sum_{d|k}\mu(\lfloor\frac{k}{d}\rfloor)g(k)$$

枚举$\lfloor\frac{k}{d}\rfloor$设为$t$

$$ans=\sum_{t=1}^{min(\lfloor\frac{a}{d}\rfloor,\lfloor\frac{b}{d}\rfloor)}\mu(t)\lfloor\frac{a}{td}\rfloor\lfloor\frac{b}{td}\rfloor$$

对于$\lfloor\frac{a}{td}\rfloor\lfloor\frac{b}{td}\rfloor$相同的一段我们可以直接用前缀和算出答案

总而言之就是先预处理出$\mu$的前缀和然后用整除分块,那么每一次询问的复杂度就是$O(\sqrt{n})$

 //minamoto
#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=6e5+;
int p[N],mu[N],vis[N],m,sum[N];ll ans,lim;
void init(int n){
mu[]=;
for(int i=;i<=n;++i){
if(!vis[i]) mu[i]=-,p[++m]=i;
for(int j=;j<=m&&p[j]*i<=n;++j){
vis[i*p[j]]=;
if(i%p[j]==) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=;i<=n;++i) sum[i]=sum[i-]+mu[i];
}
int main(){
// freopen("testdata.in","r",stdin);
int n,m,T,d;scanf("%d",&T);
init();
while(T--){
scanf("%d%d%d",&n,&m,&d);ans=;
lim=min(n/d,m/d); for(int l=,r;l<=lim;l=r+){
r=min(n/(n/l),m/(m/l));
ans+=1ll*(n/(l*d))*(m/(l*d))*(sum[r]-sum[l-]);
}
printf("%lld\n",ans);
}
return ;
}

洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)的更多相关文章

  1. 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)

    题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...

  2. 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)

    题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...

  3. 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...

  4. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  5. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  6. 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)

    题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...

  7. BZOJ1101 POI2007 Zap 【莫比乌斯反演】

    BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...

  8. [洛谷P1390]公约数的和·莫比乌斯反演

    公约数的和 传送门 分析 这道题很显然答案为 \[Ans=\sum_{i=1}^n\sum_{j=i+1}^n (i,j)\] //其中\((i,j)\)意味\(gcd(i,j)\) 这样做起来很烦, ...

  9. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

随机推荐

  1. 基于ajax的登录

    验证码 当登录一个网站的时候往往会有验证码. python生成随机验证码,需要使用到 PIL 模块 安装 : pip3 install pillow 1. 创建图片        我们现在写的验证码属 ...

  2. c# XML-Object对象 序列化-反序列化

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Tex ...

  3. java高级特性增强

    第4天 java高级特性增强 今天内容安排: 1.掌握多线程 2.掌握并发包下的队列 3.了解JMS 4.掌握JVM技术 5.掌握反射和动态代理 java多线程增强 .1. java多线程基本知识 . ...

  4. 安装与设置hexo

    普通用户(非全局)安装nodejs和npm wget -qO- https://raw.github.com/creationix/nvm/master/install.sh | sh nvm ins ...

  5. the art of seo(chapter eleven)

    Tracking Results and Measuring Success goal -> driver ***Why Measuring Success Is Essential to th ...

  6. php设置文件编码

    <?php @header('Content-type: text/html;charset=UTF-8'); ?>

  7. APIO2018爆零记

    Day1 集合 7点和yyc他们在学校简单的集合了一下 在大通道看到了整个年级来上操 嘲讽了一番就大摇大摆的走出了校门 校门口看无迟到周的权益部长lzj同学满眼的羡慕 2333 然后到了裕龙酒店登记入 ...

  8. P2764 [网络流24题]最小路径覆盖问题[最大流]

    地址 这题有个转化,求最少的链覆盖→即求最少联通块. 设联通块个数$x$个,选的边数$y$,点数$n$个 那么有 $y=n-x$   即  $x=n-y$ 而n是不变的,目标就是在保证每个点入度.出度 ...

  9. 转 对APK进行重签名

    1.      生成Android APK包签名证书1).     在doc中切换到jdk的bin目录cd C:\Program Files\Java\jdk1.6.0_18\bin2).     运 ...

  10. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...