P1963 变换序列

题目描述

对于N个整数0,1,…,N-1,一个变换序列T可以将i变成Ti,其中:Ti∈{0,1,…,N-1}且 {Ti}={0,1,…,N-1}。 x,y∈{0,1,…,N-1},定义x和y之间的距离D(x,y)=min{|x-y|,N-|x-y|}。给定每个i和Ti之间的距离D(i,Ti),你需要求出一个满足要求的变换序列T。如果有多个满足条件的序列,输出其中字典序最小的一个。 说明:对于两个变换序列S和T,如果存在p<N,满足:对于i=0,1,…,p-1,Si=Ti且Sp<Tp,我们称S比T字典序小。

N<=10000


考试时乱水了20分,还不如暴力

之后我一看

发现每一个i最多有2个能与之匹配的T[i]

明显的不带权二分图匹配

可以用匈牙利算法

但是

如果至少存在一个满足要求的变换序列T,则输出一行为N个整数,表示你计算得到的字典序最小的T;

——题目

在匈牙利算法匹配当中,如何才能保证字典序最小呢?

其实就是从后往前寻找匹配,且优先匹配小的T(即连边时小的在前)。

然后就可以兴奋的水过这一题了

其实我考试时把正解写挂了

代码蒯上

#include<iostream>
#include<iomanip>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
inline int gotcha()
{
register char c = getchar();register long long x = 0, z = 1;
for(;c>'9'||c<'0';c=getchar())z=c=='-'?-1:1;
for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
return x*z;
}
const int _ = 10002;
int n,d[_],to[_]={0},ans[_],e[_][3]={0};
bool ed[_]={0};
int dis(int x,int y){return min(abs(x-y),n-abs(x-y));}
bool finder(int now)
{
for(int i=1;i<=2;i++)
{
if(ed[e[now][i]])continue;
ed[e[now][i]]=1;
if(to[e[now][i]]==-1 || finder(to[e[now][i]]))
{to[e[now][i]]=now;return 1;}
}
return 0;
}
int main()
{
register int i,j,k;
n=gotcha();
for(i=0;i<n;i++)d[i]=gotcha();
for(i=0;i<n;i++)
{
j=(i+d[i])%n,k=(i-d[i]+n)%n;
if(j>k)swap(j,k);
e[i][1]=j;e[i][2]=k;
to[i]=-1;
}
for(i=n-1;i>=0;i--)
{
memset(ed,0,sizeof(ed));
if(!finder(i))
{
printf("%s","No Answer");
return 0;
}
}
for(i=0;i<n;i++)ans[to[i]]=i;
for(i=0;i<n;i++)printf("%d ",ans[i]);
return 0;
}

%%%Rank1 XZZ!

匈牙利算法 - Luogu 1963 变换序列的更多相关文章

  1. [Luogu 1963] NOI2009 变换序列

    [Luogu 1963] NOI2009 变换序列 先%Dalao's Blog 什么?二分图匹配?这个确定可以建图? 「没有建不成图的图论题,只有你想不出的建模方法.」 建图相当玄学,不过理解大约也 ...

  2. Bzoj 1562: [NOI2009]变换序列 匈牙利算法,二分图匹配

    题目: http://cojs.tk/cogs/problem/problem.php?pid=409 409. [NOI2009]变换序列 ★★☆   输入文件:transform.in   输出文 ...

  3. 【bzoj1562】【[NOI2009]变换序列】匈牙利算法的性质利用

    (上不了p站我要死了,侵权度娘背锅) Description Input Output Sample Input 5 1 1 2 2 1 Sample Output 1 2 4 0 3 HINT 30 ...

  4. 【BZOJ1562】[NOI2009] 变换序列(匈牙利算法)

    点此看题面 大致题意: 给你一个长度为\(n\)的序列\(D\),让你找到一个字典序最小的\(n\)的排列\(T\),满足\(D_i=min(|T_i-i|,n-|T_i-i|)\). 建图 我想建图 ...

  5. P1963 [NOI2009]变换序列 倒叙跑匈牙利算法

    题意 构造一个字典序最小的序列T,使得 Dis(i, Ti) = di,其中i是从0开始的,Dis(x,y)=min{∣x−y∣,N−∣x−y∣} ,di由题目给定. 思路 二分图匹配,把左边的看成i ...

  6. Luogu P1963 [NOI2009]变换序列(二分图匹配)

    P1963 [NOI2009]变换序列 题意 题目描述 对于\(N\)个整数\(0,1, \cdots ,N-1\),一个变换序列\(T\)可以将\(i\)变成\(T_i\),其中\(T_i \in ...

  7. BZOJ 1433 && Luogu P2055 [ZJOI2009]假期的宿舍 匈牙利算法

    刚学了匈牙利正好练练手(我不会说一开始我写错了)(怕不是寒假就讲了可是我不会) 把人看做左部点,床看作右部点 建图:(!!在校相当于有床,不在校相当于没有床 但是要来学校) 1.在校的 不走的人 自己 ...

  8. 【bzoj1562】 NOI2009—变换序列

    http://www.lydsy.com/JudgeOnline/problem.php?id=1562 (题目链接) 题意 给出一个序列(0~n-1),这个序列经过某个变换会成为另外一个序列,但是其 ...

  9. [模板] 匈牙利算法&&二分图最小字典序匹配

    匈牙利算法 简介 匈牙利算法是一种求二分图最大匹配的算法. 时间复杂度: 邻接表/前向星: \(O(n * m)\), 邻接矩阵: \(O(n^3)\). 空间复杂度: 邻接表/前向星: \(O(n ...

随机推荐

  1. jeecg308自定义使用getDataGridReturn方法分页失效问题

    DataGrid dataGrid = new DataGrid(); dataGrid.setPage(p); dataGrid.setRows(r); dataGrid.setOrder(&quo ...

  2. Spring Cloud--搭建Eureka注册中心服务

    使用RestTemplate远程调用服务的弊端: Eureka注册中心: Eureka原理: 搭建Eureka服务 引pom 启动类: 启动类上要加上@EnableEurekaServer注解: 配置 ...

  3. css3相关样式

    1.渐变 1.1 线性渐变(Linear Gradients)- 向下/向上/向左/向右/对角方向 background: linear-gradient(direction, color-stop1 ...

  4. ABAP扫雷游戏

    . INCLUDE <icon>. CONSTANTS: " >> board cell values blank_hidden ', blank_marked TY ...

  5. java 实现 excel sheet 拷贝到另一个Excel文件中 poi

    public class CopyExcelSheetToAnotherExcelSheet { public static void main(String[] args) throws FileN ...

  6. Hive的HQL(2)

    Hive基础(1) Hive的HQL(2) 1. HQL的数据定义,HQL是一种SQL方言,支持绝大部分SQL-92标准.但是和SQL的差异为:不支持行级别的操作,不支持事务等.HQL的语法接近于My ...

  7. 【装载】删除Oracle11G

    卸载Oracle步骤:1.停止所有与ORACLE相关的服务.2. 使用OUI(Oracle Universal Installer)卸载Oracle软件.   “开始”->“程序”->“O ...

  8. HDU 2639 Bone Collector II (01背包,第k解)

    题意: 数据是常规的01背包,但是求的不是最大容量限制下的最佳解,而是第k佳解. 思路: 有两种解法: 1)网上普遍用的O(V*K*N). 2)先用常规01背包的方法求出背包容量限制下能装的最大价值m ...

  9. DDOS介绍

    DDOS: Data Domain Operating System(DD OS),即数据域操作系统----管理EMC的数据域拷贝存储系统(powers EMC Data Domain dedupli ...

  10. UI EventSystem事件监听

    Unity5.0 EventSystem事件系统的详细说明 一.EventSystem对象的说明 当我们在场景中创建任一UI对象后,Hierarchy面板中都可以看到系统自动创建了对象EventSys ...