题意:给出一个二叉树,每条边上有一定的边权,并且剪掉一些树枝,求留下 Q 条树枝的最大边权和。  ( 节点数 n ≤100,留下的枝条树 Q ≤ n ,所有边权和 ∑w[i] ≤30000 )

  细节:对于一棵子树 u 来说如果剪掉 u 节点上方的树枝,则该子树内的所有树枝都相当于被剪去。

  分析:由于是二叉树,所以转移就与左右子树有关,其次我们需要求出最大的边权和,而且需要记录当前子树保留了多少枝条。

      所以 Dp 的状态:dp[u][j] 表示以 u 为根保留了 j 条树枝(包括 u 的前一条树枝)

      转移: dp[u][j] = max( dp[lx[u]][k] + dp[ly[u]][j-k-1] + Pre[u], dp[u][j] ) lx[u]表示 u 的左子树,ly[u]表示 u 的右子树,Pre[u]表示 u 的前一条边

                      ( j≤size[u],k≤min( size[lx[u]] , j-1) )size[u]表示以 u 为子树的节点个数

  

  代码如下:

#include <bits/stdc++.h>
#define MAXN 105
using namespace std; struct edge{
int to, Next, val;
}Right[MAXN<<];
int Begin[MAXN], f[MAXN][MAXN], Pre[MAXN], size[MAXN], n, q, cnt, lx[MAXN], ly[MAXN]; inline void add_edge(int x, int y, int z){
Right[++cnt].to=y;
Right[cnt].Next=Begin[x];
Begin[x]=cnt;
Right[cnt].val=z;
} void build(int u, int fa){
size[u]=;
for (int i=Begin[u]; i; i=Right[i].Next){
int v=Right[i].to;
if (v==fa) continue;
Pre[v]=Right[i].val;
if (!lx[u]) lx[u]=v;
else ly[u]=v;
build(v, u);
size[u]+=size[v];
}
} void solve(int u, int fa){
for (int i=Begin[u]; i; i=Right[i].Next){
int v=Right[i].to;
if (v==fa) continue;
solve(v, u);
for (int j=; j<=size[u]; j++)
for (int k=; k<=min(size[lx[u]], j-); k++)
f[u][j]=max(f[u][j], f[lx[u]][k]+f[ly[u]][j-k-]+Pre[u]);
}
} int main(){
scanf("%d%d", &n, &q);
for (int i=; i<n; i++){
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
add_edge(x, y, z);
add_edge(y, x, z);
}
build(, );
for (int i=; i<=n; i++) f[i][]=Pre[i];
solve(, );
printf("%d\n", f[][q+]);
return ;
}

二叉苹果树——树形Dp(由根到左右子树的转移)的更多相关文章

  1. 【P2015】二叉苹果树 (树形DP分组背包)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 现在这颗树枝条太多了,需要剪枝.但是 ...

  2. P2015 二叉苹果树[树形dp+背包]

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  3. P2015 二叉苹果树 (树形动规)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  4. Codevs1378选课[树形DP|两种做法(多叉转二叉|树形DP+分组背包)---(▼皿▼#)----^___^]

    题目描述 Description 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的.学生选修 ...

  5. 【Luogu】P2015二叉苹果树(DP,DFS)

    题目链接 设f[i][j][k]表示给以i为根节点的子树分配j条可保留的树枝名额的时候,状态为k时能保留的最多苹果. k有三种情况. k=1:我只考虑子树的左叉,不考虑子树的右叉,此时子树能保留的最多 ...

  6. [luoguP2015] 二叉苹果树(DP)

    传送门 貌似是个树形背包... 好像吧.. f[i][j]表示节点i选条边的最优解 #include <cstdio> #include <cstring> #include ...

  7. 二叉苹果树|codevs5565|luoguP2015|树形DP|Elena

    二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的 ...

  8. P2015 二叉苹果树,树形dp

    P2015 二叉苹果树 题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树) 思路:一开始就很直接的想到 ...

  9. [Luogu2015]二叉苹果树(树形dp)

    [Luogu2015] 二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. ...

随机推荐

  1. github 新建一个分支

    我能说今天在github上新建分支的时候懵逼了半天吗..为了下次不再懵逼,还是在这里记录一下吧.. 进入你的项目---code---Branch----点击那个倒三角-----你会发现一个输入框(这是 ...

  2. (转)Linux命令之Ethtool用法详解

    Linux命令之Ethtool用法详解 原文:http://www.linuxidc.com/Linux/2012-01/52669.htm Linux/Unix命令之Ethtool描述:Ethtoo ...

  3. OpenCV ——IplImage应用解析

    由于OpenCV主要针对的是计算机视觉方面的处理,因此在函数库中,最重要的结构体是IplImage结构.IplImage结构来源于Intel的另外一个函数库Intel Image Processing ...

  4. Vue部分知识

    一.本尊建议的学习顺序:https://zhuanlan.zhihu.com/p/23134551(侵删) 二.安装: 1.安装 Node.js,可以去Node.js的官网上下载: 2.(非必选)如果 ...

  5. 帝国empirecms去除后台登陆认证码

    打开文件:\e\config\config.php 找到代码 $ecms_config['esafe']['loginauth']='abc'; 把值设为空即可,即改为 $ecms_config['e ...

  6. (一)我的Javascript系列:Javascript的面向对象旅程(上)

    今宵酒醒何处,杨柳岸,晓风残月 导引 我的JavaScript系列文章是我自己对JavaScript语言的感悟所撰写的系列文章.现在还没有写完.目前一共出了下面的系列: (三)我的JavaScript ...

  7. 如果不需要,建议移除net standard类库中的Microsoft.NETCore.Portable.Compatibility

    使用Microsoft.NETCore.Portable.Compatibility会破坏该类库在Mono和Xamarin平台的兼容性 可能导致的问题 provides a compile-time ...

  8. VB SMTP用户验证发送mail

    转自 http://www.jishuzh.com/program/vb-smtp%E7%94%A8%E6%88%B7%E9%AA%8C%E8%AF%81%E5%8F%91%E9%80%81mail. ...

  9. HDU - 5457 Hold Your Hand (Trie + 最小割)

    Hold Your Hand Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)T ...

  10. Android(java)学习笔记110:Java中操作文件的类介绍(File + IO流)

    1.File类:对硬盘上的文件和目录进行操作的类.    File类是文件和目录路径名抽象表现形式  构造函数:        1) File(String pathname)       Creat ...