dense prediction 

理解:标注出图像中每个像素点的对象类别,要求不但给出具体目标的位置,还要描绘物体的边界,如图像分割、语义分割、边缘检测等等。

基于深度学习主要的做法有两种:

  • 基于图像分块:利用像素、超像素块周围小邻域进行独立的分类。(在分类网络中使用全连接层,固定图像块尺寸)
  • 基于全卷积网络:对图像进行pixel-to-pixel 的预测,可以得到任意大小的图像分割结果,而且不需要对每个图像块进行分类,速度快。重要的两点:卷积层上采样、skip connection结构

由于全卷积网络的各种优点,之后各种改进模型被提出来:

  • u-net(用作医学图像分割)对图像进行编码之后解码,在编码时同样是卷积+下采样的结构,为了恢复图像的细节空间信息,在编码与解码过程中加入shortcut connection结构。
  • segNet结构:也是一种编码解码结构,无shortcut connection结构,(将最大池化索引maxpooling indices 转移到解码器)解码时,不像FCN中进行upsampling 的反卷积,而是复制了最大池化索引,使得segNet 比FCN节省内存。(但是准确率不高)
  • dialated convolutions 结构:此结构不需要池化层,使用空洞卷积使得感受野指数增长,但空间维度不下降。3*3的卷积核对应5*5的视觉野。但是空洞卷积的缺点是:得到的都是高分辨率的特征图,计算量较大。

tips:尽管这些操作补充了细节信息,但是还是丢失部分信息,因此为了优化结果常常使用fully connected CRF 进行优化,CRF是基于图像的颜色信息对图像进行平滑分割的算法,改善分割结果。将灰度相近的像素标注为同一类,(相似的基于图的图像分割算法,在显著性检测 基于流行排序算法的显著性目标分割,也是同样的思想,要尽量保持原始的label, 又要使颜色相似的像素点归为一类)在DeepLab 论文中使用空洞卷积和CRF:

近来各种改进的模型:

  • refineNet:用于边缘检测,编码解码的改进以及残差连接设计,编码器是resNet101结构。解码是多层连接。
  • PSPNet
  • large kernel matters

参考: https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw%3D%3D&idx=4&mid=2650728920&sn=3c51fa0a95742d37222c3e16b77267ca

dense prediction问题的更多相关文章

  1. dense prediction

    Dense prediction  fully convolutional network for sementic segmentation 先用feature extractor 提特征,然后再使 ...

  2. Anchor-free目标检测综述 -- Dense Prediction篇

      早期目标检测研究以anchor-based为主,设定初始anchor,预测anchor的修正值,分为two-stage目标检测与one-stage目标检测,分别以Faster R-CNN和SSD作 ...

  3. 论文阅读(Xiang Bai——【arXiv2016】Scene Text Detection via Holistic, Multi-Channel Prediction)

    Xiang Bai--[arXiv2016]Scene Text Detection via Holistic, Multi-Channel Prediction 目录 作者和相关链接 方法概括 创新 ...

  4. Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)

    摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有 ...

  5. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  6. 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells

    Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...

  7. OSVOS 半监督视频分割入门论文(中文翻译)

    摘要: 本文解决了半监督视频目标分割的问题.给定第一帧的mask,将目标从视频背景中分离出来.本文提出OSVOS,基于FCN框架的,可以连续依次地将在IMAGENET上学到的信息转移到通用语义信息,实 ...

  8. 论文阅读笔记六:FCN:Fully Convolutional Networks for Semantic Segmentation(CVPR2015)

    今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn ...

  9. 人工智能必须要知道的语义分割模型:DeepLabv3+

    图像分割是计算机视觉中除了分类和检测外的另一项基本任务,它意味着要将图片根据内容分割成不同的块.相比图像分类和检测,分割是一项更精细的工作,因为需要对每个像素点分类,如下图的街景分割,由于对每个像素点 ...

随机推荐

  1. Vue父组件向子组件传递一个动态的值,子组件如何保持实时更新实时更新?

    原文:https://blog.csdn.net/zhouweixue_vivi/article/details/78550738 2017年11月16日 14:22:50 zhouweixue_vi ...

  2. 转://Oracle数据库升级后保障SQL性能退化浅谈

    一.数据库升级后保障手段 为了保障从10.2.0.4版本升级到11.2.0.4版本更加平稳,我们事先采用了oracle性能分析器(SQL Performance Analyzer)来预测数据库的关键S ...

  3. Spring Security(三十五):Part III. Testing

    This section describes the testing support provided by Spring Security. 本节介绍Spring Security提供的测试支持. ...

  4. nginx与fastdfs配置详解与坑

    nginx与fastdfs配置详解与坑 环境 ubantu19.04 fastdfs-5.11 fastdfs-nginx-module-1.20 libfastcommon-1.0.39 nginx ...

  5. odoo中def init(self):

    # -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. f ...

  6. ABP大型项目实战(2) - 调试与排错 - 日志 - 查看审计日志

    这是<ABP大型项目实战>系列文章的一篇.   项目发布到生产环境后难免会有错误. 那么如何进行调试和排错呢?   我看到俱乐部里有人是直接登陆生产服务器把数据库下载到开发机器进行调试排错 ...

  7. 拖放排序插件Sortable.js

    特点 支持触屏设备和大部分浏览器(IE9以下的就不支持了,原因都懂得) 可以从一个列表容器中拖拽一个列表单元到其他容器或本列表容器中进行排序 移动列表单元时有css动画 支持拖放操作和可选择的文本(这 ...

  8. 三十三、ajaxFileUpload图片上传

    $.ajaxFileUpload({ url : "api/upload/filesUpload", secureuri : false, //一般设置为false fileEle ...

  9. vertical-align和text-align属性实现垂直水平居中

    HTML: <div class="box"> <div class="content"> <span class="s ...

  10. centos7之关于时间和日期以及时间同步的应用

    在CentOS 6版本,时间设置有date.hwclock命令,从CentOS 7开始,使用了一个新的命令timedatectl. 基本概念: 一.GMT.UTC.CST.DST 时间 UTC 整个地 ...