dense prediction 

理解:标注出图像中每个像素点的对象类别,要求不但给出具体目标的位置,还要描绘物体的边界,如图像分割、语义分割、边缘检测等等。

基于深度学习主要的做法有两种:

  • 基于图像分块:利用像素、超像素块周围小邻域进行独立的分类。(在分类网络中使用全连接层,固定图像块尺寸)
  • 基于全卷积网络:对图像进行pixel-to-pixel 的预测,可以得到任意大小的图像分割结果,而且不需要对每个图像块进行分类,速度快。重要的两点:卷积层上采样、skip connection结构

由于全卷积网络的各种优点,之后各种改进模型被提出来:

  • u-net(用作医学图像分割)对图像进行编码之后解码,在编码时同样是卷积+下采样的结构,为了恢复图像的细节空间信息,在编码与解码过程中加入shortcut connection结构。
  • segNet结构:也是一种编码解码结构,无shortcut connection结构,(将最大池化索引maxpooling indices 转移到解码器)解码时,不像FCN中进行upsampling 的反卷积,而是复制了最大池化索引,使得segNet 比FCN节省内存。(但是准确率不高)
  • dialated convolutions 结构:此结构不需要池化层,使用空洞卷积使得感受野指数增长,但空间维度不下降。3*3的卷积核对应5*5的视觉野。但是空洞卷积的缺点是:得到的都是高分辨率的特征图,计算量较大。

tips:尽管这些操作补充了细节信息,但是还是丢失部分信息,因此为了优化结果常常使用fully connected CRF 进行优化,CRF是基于图像的颜色信息对图像进行平滑分割的算法,改善分割结果。将灰度相近的像素标注为同一类,(相似的基于图的图像分割算法,在显著性检测 基于流行排序算法的显著性目标分割,也是同样的思想,要尽量保持原始的label, 又要使颜色相似的像素点归为一类)在DeepLab 论文中使用空洞卷积和CRF:

近来各种改进的模型:

  • refineNet:用于边缘检测,编码解码的改进以及残差连接设计,编码器是resNet101结构。解码是多层连接。
  • PSPNet
  • large kernel matters

参考: https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw%3D%3D&idx=4&mid=2650728920&sn=3c51fa0a95742d37222c3e16b77267ca

dense prediction问题的更多相关文章

  1. dense prediction

    Dense prediction  fully convolutional network for sementic segmentation 先用feature extractor 提特征,然后再使 ...

  2. Anchor-free目标检测综述 -- Dense Prediction篇

      早期目标检测研究以anchor-based为主,设定初始anchor,预测anchor的修正值,分为two-stage目标检测与one-stage目标检测,分别以Faster R-CNN和SSD作 ...

  3. 论文阅读(Xiang Bai——【arXiv2016】Scene Text Detection via Holistic, Multi-Channel Prediction)

    Xiang Bai--[arXiv2016]Scene Text Detection via Holistic, Multi-Channel Prediction 目录 作者和相关链接 方法概括 创新 ...

  4. Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)

    摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有 ...

  5. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  6. 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells

    Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...

  7. OSVOS 半监督视频分割入门论文(中文翻译)

    摘要: 本文解决了半监督视频目标分割的问题.给定第一帧的mask,将目标从视频背景中分离出来.本文提出OSVOS,基于FCN框架的,可以连续依次地将在IMAGENET上学到的信息转移到通用语义信息,实 ...

  8. 论文阅读笔记六:FCN:Fully Convolutional Networks for Semantic Segmentation(CVPR2015)

    今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn ...

  9. 人工智能必须要知道的语义分割模型:DeepLabv3+

    图像分割是计算机视觉中除了分类和检测外的另一项基本任务,它意味着要将图片根据内容分割成不同的块.相比图像分类和检测,分割是一项更精细的工作,因为需要对每个像素点分类,如下图的街景分割,由于对每个像素点 ...

随机推荐

  1. linux环境下快速安装Mariadb和Redis

    一 Mariadb(Mysql)篇 1.新建一个yum源仓库 touch /etc/yum.repos.d/Mariadb.repo 2.在这个yum源仓库文件中,添加仓库url地址 [mariadb ...

  2. HBase实践案例:车联网监控系统

    项目背景 本项目为车联网监控系统,系统由车载硬件设备.云服务端构成.车载硬件设备会定时采集车辆的各种状态信息,并通过移动网络上传到服务器端.服务器端接收到硬件设备发送的数据首先需要将数据进行解析,校验 ...

  3. Nginx健康检查模块

    在本小节我们介绍一个用于Nginx对后端UpStream集群节点健康状态检查的第三方模块:nginx_upstream_check_module(https://github.com/yaoweibi ...

  4. Redtiger SQL注入练习(二)

    第六关: 点击 click me,构造url:user=1',返回user not found.user=1'',同样. 猜测是数字型注入,构造order by , user=1 order by  ...

  5. jconsole连接本地进程报安全连接失败

    连接本地程序报错 在idea工具中添加如下命令 -Djava.rmi.server.hostname=127.0.0.1 -Dcom.sun.management.jmxremote.port=888 ...

  6. Golang 入门系列(七) Redis的使用

    安装 1. Redis 的安装很简单,我这里测试直接用的是windows 的版本.如何安装就不细说了.想了解的可以看之前的文章:https://www.cnblogs.com/zhangweizhon ...

  7. 私有云方案——利用阿里云云解析实现DDNS

            各位都是程序员,工作中是不是遇到个类似情况.在家里研究的一些开源代码或写的一些demo或试验代码,在工作中正好需要参考一下,但是在家里的电脑上.           虽然这些都可以用云 ...

  8. TensorFlow基础

    TensorFlow基础 SkySeraph  2017 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Over ...

  9. PostgreSql扩展Sql-动态加载共享库(C函数)

    基于 psql (PostgreSQL) 10.4 pg_language表定义了函数实现所使用的语言.主要支持了C语言和SQL语句.一些可选的语言包括pl/pgsql.tcl和perl. ligan ...

  10. Flutter之List

    void listDemo() { // 1.list的创建 listCreate(); // 2.多种类型的输出 listPrint(); // 3.添加数据 listAddElement(); / ...