numpy 库简单使用

一、numpy库简介

  Python标准库中提供了一个array类型,用于保存数组类型的数据,然而这个类型不支持多维数据,不适合数值运算。作为Python的第三方库numpy便有了用武之地。

  numpy库处理的最基础数据类型是用同种元素构成的多维数组(ndarray),简称数组。数组中所有元素的类型必须相同,数组中元素可以用整数索引,序号从0开始。ndarray类型的维度叫作轴(axes),轴的个数叫做秩(rank)。

二、numpy库下载

pip install numpy

三、导入库函数

import numpy as np

四、库函数基本使用

1. 创建数组的函数 (ndarray类型)

函数

说明

np.array([ x, y, z], dtype = int)

从列表或数组中创建数组

np.arange(x, y, i)

创建一个由x到y,以i为步长的数组

np.linspace(x, y, n)

创建一个由x到y,等分成n个元素的数组

np.indices((m, n))

创建一个m行n列的矩阵(3维数组)

np.random.rand(m, n)

创建一个m行n列的随机数组

np.ones((m,n), dtype)

创建一个m行n列的全1数组,dtype为数据类型

np.zeros((m,n), dtype)

创建一个m行n列的全0数组,dtype为数据类型

np.empty((m,n), dtype)

创建一个m行n列的空数组,dtype为数据类型

 1 import numpy as np
2
3 ''' numpy --> array() '''
4 a1 = np.array([1,2,3,5,8,13,21,34,55,89], dtype = int) # 由列表创建数组
5 array_ = (2.3,8,10/3,5.0,1/7) # 创建元组
6 a2 = np.array(array_) # 由元组创建数组
7 print('numpy --> array():\n',a1,'\n',a2)
8
9 ''' numpy --> arange() '''
10 arange_1 = np.arange(1,30,4)
11 arange_2 = np.arange(1,3,0.4)
12 print('numpy --> arange():\n',arange_1,'\n',arange_2)
13
14 ''' numpy --> linspace() '''
15 lins_1 = np.linspace(1,10,10)
16 lins_2 = np.linspace(1,10,9, dtype = int)
17 print('numpy --> linspace():\n',lins_1,'\n',lins_2)
18
19 ''' numpy --> random.rand() '''
20 rand_ = np.random.rand(3,4)
21 print('numpy --> random.rand():\n',rand_)
22
23 ''' numpy --> ones() '''
24 ones_1 = np.ones((3,4)) # 默认为float
25 ones_2 = np.ones((3,4),dtype = int)
26 print('numpy --> ones():\n',ones_1,'\n',ones_2)
27
28 ''' numpy --> zeros() '''
29 zeros_1 = np.zeros((2,3))
30 zeros_2 = np.zeros((2,3), dtype = int)
31 print('numpy --> zeros():\n',zeros_1,'\n',zeros_2)

2. ndarray类型的常用属性

属性

说明

ndarray.ndim

返回数组轴的个数,即数组的秩

ndarray.shape

返回数组在每个维度上大小的整数元组

ndarray.size

返回数组元素的总个数

ndarray.dtype

返回数组元素的数据类型

ndarray.itemsize

返回数组元素的字节大小

ndarray.data

返回数组元素的缓存区地址

ndarray.flat

数组元素的迭代器

 1 import numpy as np
2 a = np.indices((5,8)) # 创建一个m行n列的矩阵
3 print("数组a的秩:",a.ndim)
4 print("数组a各维度的大小:",a.shape)
5 print("数组a元素的总个数:",a.size)
6 print("数组a元素的数据类型:",a.dtype)
7 print("数组a元素的字节大小:",a.itemsize)
8 print("数组a元素的缓存区地址:",a.data)
9 print("数组a元素的迭代器:",a.flat)
10 print("数组a的元素:\n",a)

3. ndarray类型的形态操作方法

操作方法

说明

ndarray.reshape(n, m)

返回一个维度为(n, m)的数组副本

ndarray.resize(new_shape)

修改数组的维度大小

ndarray.swapaxes(ax1, ax2)

调换数组ax1维度与ax2维度,返回调换后的数组

ndarray.flatten()

对数组进行降维,返回一维数组

ndarray.ravel()

对数组进行降维,返回数组的一个视图

 1 import numpy as np
2 a = np.arange(20)
3 print('(1) 创建一维数组a:\n',a)
4 b = a.reshape(2,10)
5 print('(2) 由a创建(2,10)的数组b:\n',b)
6 a.resize(4,5)
7 print('(3) 修改数组a为(4,5):','Shape of a:',a.shape,'\n',a)
8 c = a.swapaxes(0,1)
9 print('(4) 调换数组a第1维度与第2维度得到数组c:(5,4)','Shape of c:',c.shape,'\n',c)
10 d = a.flatten()
11 print('(5) 对数组a降维,得到一维数组d:','Shape of d:',d.shape,'\n',d)
12 e = a.ravel()
13 print('(6) 对数组a降维,得到数组a的视图e','Shape of e:',e.shape,'\n',e)

4. ndarray类型的索引与切片方法

方法

说明

x [i]

索引数组x的第i个元素

x [-i]

从后往前索引数组x的第i个元素

x [n : m]

从前往后索引数组x,不包含第m个元素

x [-m : -n]

从后往前索引数组x,结束位置为n

x [n : m: i]

以i为步长索引数组x

1 import numpy as np
2 a = np.arange(8)
3 print('a:',a)
4 print('a[4]:',a[4])
5 print('a[-6:-3]:',a[-6:-3])
6 print('a[1:6:2]:',a[1:6:2])

5. ndarray类型的算术运算函数

函数

说明

np.add(x1, x2 [,y])

y = x1 + x2

np.subtract(x1, x2 [,y])

y = x1 - x2

np.multiply(x1, x2 [,y])

y = x1 * x2

np.divide(x1, x2 [,y])

y = x1 / x2

np.floor_divide(x1, x2 [,y])

y = x1 // x2

np.negative(x [,y])

y = -x

np.power(x1, x2 [,y])

y = x1 ** x2

np.remainder(x1, x2 [,y])

y = x1 % x2

1 import numpy as np
2 A1 = np.arange(1,9)
3 A2 = np.arange(1,30,4)
4
5 print('A1:',A1)
6 print('A2:',A2)
7 print('A2-A1:',np.subtract(A2,A1))
8 print('A2//A1:',np.floor_divide(A2,A1))
9 print('A2%A1:',np.remainder(A2,A1))

6. ndarray类型的比较运算函数

函数

说明

np.equal(x1, x2 [,y])

y = x1 == x2

np.not_equal(x1, x2 [,y])

y = x1 != x2

np.less(x1, x2 [,y])

y = x1 < x2

np.less_equal(x1, x2 [,y])

y = x1 <= x2

np.greater(x1, x2 [,y])

y = x1 > x2

np.greater_equal(x1, x2 [,y])

y = x1 >= x2

np.where(condition [x, y])

根据条件判断输出x或y

 1 import numpy as np
2 A1 = np.arange(1,9)
3 A2 = np.arange(1,30,4)
4
5 print('A1:',A1)
6 print('A2:',A2)
7 print('A1 != A2:',np.not_equal(A1,A2))
8 print('A1 <= A2:',np.less_equal(A1,A2))
9 print('Use of where_1:',np.where(A1>=5,'Y','N'))
10 print('Usage as much of where:{}'.format('Y' if A1[3]>=5 else 'N'))

7. ndarray类型的其他运算函数

函数

说明

np.abs(x)

返回数组x每个元素的绝对值

np.sqrt(x)

返回数组x每个元素的平方根

np.square(x)

返回数组x每个元素的平方

np.sign(x)

返回数组x每个元素的符号:1(+)、0、-1(-)

np.ceil(x)

返回大于或等于数组x每个元素的最小值

np.floor(x)

返回小于或等于数组x每个元素的最大值

np.rint(x [,out])

返回数组x每个元素最接近的整数

np.exp(x [,out])

返回数组x每个元素的指数值

np.log(x) / np.log2(x) / np.log10(x)

返回数组x每个元素相应的对数(e、2、10)

1 import numpy as np
2 A1 = np.arange(1,9)
3 A2 = np.arange(1,30,4)
4
5 print('A1:',A1)
6 print('A2:',A2)
7 print('A2的平方根:',np.sqrt(A2))
8 print('A1的平方:',np.sqrt(A1))
9 print('A2 2的对数:',np.log2(A2))

numpy 库使用的更多相关文章

  1. 安装numpy库

    1.先安装pip: 下载地址:http://pypi.python.org/pypi/pip#downloads 下载pip-8.1.2.tar.gz(md5,pgp)完成之后,解压到一个文件夹,cm ...

  2. Python的numpy库下的几个小函数的用法

    numpy库是Python进行数据分析和矩阵运算的一个非常重要的库,可以说numpy让Python有了matlab的味道 本文主要介绍几个numpy库下的小函数. 1.mat函数 mat函数可以将目标 ...

  3. numpy库:常用基本

    numpy 本文主要列出numpy模块常用方法 大部分内容来源于网络,而后经过自己的一点思考和总结,如果有侵权,请联系我 我是一名初学者,有哪些地方有错误请留言,我会及时更改的 创建矩阵(采用ndar ...

  4. Python数据分析numpy库

    1.简介 Numpy库是进行数据分析的基础库,panda库就是基于Numpy库的,在计算多维数组与大型数组方面使用最广,还提供多个函数操作起来效率也高 2.Numpy库的安装 linux(Ubuntu ...

  5. 数据分析与展示——NumPy库入门

    这是我学习北京理工大学嵩天老师的<Python数据分析与展示>课程的笔记.嵩老师的课程重点突出.层次分明,在这里特别感谢嵩老师的精彩讲解. NumPy库入门 数据的维度 维度是一组数据的组 ...

  6. 初识NumPy库-基本操作

    ndarray(N-dimensional array)对象是整个numpy库的基础. 它有以下特点: 同质:数组元素的类型和大小相同 定量:数组元素数量是确定的 一.创建简单的数组: np.arra ...

  7. numpy库常用基本操作

    NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量.比如说,二维数组相当于是一个一维数 ...

  8. Numpy库(个人学习笔记)

    一样,咱的计算机还是得先拥有Python,并且安装了Numpy库.有疑问的话可以看这里呦~~~~ 下面开讲: NumPy的主要对象是齐次多维数组.它是一个元素表(通常是数字),并且都是相同类型,由正整 ...

  9. Numpy库的下载及安装(吐血总结)

    Python很火,我也下了个来耍耍一阵子.可是渐渐地,我已经不满足于它的基本库了,我把目光转到了Numpy~~~~~ 然而想法总是比现实容易,因为我之前下的是Python3.3.x,所有没有自带pip ...

  10. 简单记录numpy库的某些基本功能

    这里介绍python的一个库,numpy库,这个库是机器学习,数据分析最经常用到的库之一,也是利用python做数据必须用到的一个库,入门机器学习学的第一个python库就是它了. 先对其导入到pyt ...

随机推荐

  1. linux 修改普通用户的 max user process

    因为出现  fork: retry: No child processes 问题 , google了一下 , 大家说是要去修改 /etc/security/limits.conf 文件 , 然后我用r ...

  2. Cocos Creator学习三:生命周期回调函数

    1.目的:学习生命周期回调函数以及回调顺序,更有利于我们逻辑的处理把控. 2.生命周期回调函数: 节点:指cc.Node:组件:指cc.Component. ①onLoad:脚本组件绑定的节点所在场景 ...

  3. Pytest(一)

    1.在命令行运行 2.在pytest框架中,有如下约束: 所有的单测文件名都需要满足test_*.py格式或*_test.py格式. 在单测文件中,可以包含test_开头的函数,也可以包含Test开头 ...

  4. js下拉列表选中

    var monthobj = document.getElementById("pid");// for(var i=0; i<monthobj.options.length ...

  5. Azure中block和Page的比较 Azure: Did You Know? Block vs Page Blobs

    Azure storage service supports two types of blobs (blob, or BLOB, stand for Binary Large OBject, i.e ...

  6. Java中BigDecimal的舍入模式

    java.math.BigDecimal 不可变的.任意精度的有符号十进制数.BigDecimal 由任意精度的整数非标度值和32位的整数标度(scale)组成. 如果为零或正数,则标度是小数点后的位 ...

  7. IIS Service Unavailable HTTP Error 503. The service is unavailable.

    IIS突然报了上图这样一个错误,很意外,这问题的来源百度上有多个版本,处理的办法几乎都是一样的,你可以通过下边这个链接去查看, https://www.cnblogs.com/fri-yu/p/407 ...

  8. 正向代理 vs 反向代理

    正向代理: 内网客户端访问外网服务器的中介 反向代理: 外网客户端访问内网服务器的中介 正向代理: 代理访问外部资源 正向代理的用途: 1. 访问原来无法访问的资源 , 如googl 2. 可以做缓存 ...

  9. 使用monitor.bat用DDMS查看其它项目的布局

    查看结果

  10. SSM框架中如何简便上传文件表单

    此种方式上传文件相对简单,以下均经测试成功,才提供到此. 以下为单个文件上传方式 分析:本次的工作目的是根据一级标题产生对应的二级标题,在每个二级标题下对应一个(file字段)新闻文件,当点击新闻文件 ...