bzoj 3513: [MUTC2013]idiots FFT

链接

bzoj

思路

参考了学姐TRTTG的题解

统计合法方案,最后除以总方案。

合法方案要不好统计,统计不合法方案。

\(a+b<=c\)的个数

f[i]是i出现的个数

g[i]表示a+b=i的个数,a<=b

这个可以fft加速到\(nlogn\)统计.

具体的,fft算出ff的卷积,减去自己自己的贡献,然后/2就是了g[i]。

不合法方案数就是:\(\sum f[i]*g[i]\)

最终答案是\(ans=\frac{C_n^3-tot}{C_n^3}\)

代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=4e5+7;
const double Pi=acos(-1.0);
int read() {
int x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
int n,m,r[N],limit=1,l;
struct Complex {
double x,y;
Complex(double xx=0,double yy=0) {x=xx,y=yy;}
}a[N],b[N];
Complex operator + (Complex a,Complex b) {return Complex(a.x+b.x,a.y+b.y);}
Complex operator - (Complex a,Complex b) {return Complex(a.x-b.x,a.y-b.y);}
Complex operator * (Complex a,Complex b) {return Complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
void fft(Complex *a,int type) {
for(int i=0;i<=limit;++i)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int mid=1;mid<limit;mid<<=1) {
Complex Wn(cos(Pi/mid),type*sin(Pi/mid));
for(int i=0;i<limit;i+=mid<<1) {
Complex w(1,0);
for(int j=0;j<mid;++j,w=w*Wn) {
Complex x=a[i+j],y=w*a[i+j+mid];
a[i+j]=x+y;
a[i+j+mid]=x-y;
}
}
}
}
ll f[N],g[N],sum[N];
void solve() {
memset(a,0,sizeof(a));
memset(f,0,sizeof(f));
n=read();
for(int i=1;i<=n;++i) f[read()]++;
for(int i=0;i<=limit;++i) a[i].x=f[i];
fft(a,1);
for(int i=0;i<=limit;++i) a[i]=a[i]*a[i];
fft(a,-1);
for(int i=0;i<=limit;++i)
g[i]=(int)(a[i].x/limit+0.5);
for(int i=0;i<=limit;++i) g[i*2]-=f[i];
for(int i=0;i<=limit;++i) g[i]>>=1;
for(int i=0;i<=limit;++i) g[i]+=g[i-1];
ll tot=0;
for(int i=0;i<=limit;++i) tot+=1LL*f[i]*g[i];
ll ans=1LL*n*(n-1)*(n-2)/6;
printf("%.7lf\n",(double)(ans-tot)/ans);
}
int main() {
while(limit<=200000) limit<<=1,l++;
for(int i=0;i<=limit;++i)
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int T=read();T;T--) solve();
return 0;
}

bzoj 3513: [MUTC2013]idiots FFT的更多相关文章

  1. bzoj 3513 [MUTC2013]idiots FFT 生成函数

    [MUTC2013]idiots Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 806  Solved: 265[Submit][Status][Di ...

  2. BZOJ 3513: [MUTC2013]idiots

    3513: [MUTC2013]idiots Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 476  Solved: 162[Submit][Stat ...

  3. bzoj 3513: [MUTC2013]idiots【生成函数+FFT】

    想了好长时间最后发现真是石乐志 第一反应就是两边之和大于第三边,但是这个东西必须要满足三次-- 任意的两边之和合通过生成函数套路+FFT求出来(记得去掉重复选取的),然后这任意两边之和大于任意第三边可 ...

  4. 【刷题】BZOJ 3513 [MUTC2013]idiots

    Description 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. Input 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是 ...

  5. BZOJ3513[MUTC2013]idiots——FFT+生成函数

    题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...

  6. 【bzoj3513】[MUTC2013]idiots FFT

    题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...

  7. bzoj千题计划168:bzoj3513: [MUTC2013]idiots

    http://www.lydsy.com/JudgeOnline/problem.php?id=3513 组成三角形的条件:a+b>c 其中,a<c,b<c 若已知 两条线段之和=i ...

  8. [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)

    [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...

  9. 2019.01.02 bzoj3513: [MUTC2013]idiots(fft)

    传送门 fftfftfft经典题. 题意简述:给定nnn个长度分别为aia_iai​的木棒,问随机选择3个木棒能够拼成三角形的概率. 思路:考虑对于木棒构造出生成函数然后可以fftfftfft出两个木 ...

随机推荐

  1. Mac mini 使用打印机

    扫描与打印机使用: 第一步:左上角黑苹果->系统偏好设置->打印机与扫描仪->设置打印机 第二步:Launchpad -> 预览 -> 文件 -> 从扫描仪导入-& ...

  2. css相关整理-其他

    1.设备像素(device pixel): 设备像素是物理概念,指的是设备中使用的物理像素.CSS像素(css pixel): CSS像素是Web编程的概念,指的是CSS样式代码中使用的逻辑像素.通过 ...

  3. 2019/4/22 拓扑排序的高效写法. 模板题HDU1285:确定比赛名次

    传送门 Problem Description 有N个比赛队(1<=N<=500),编号依次为1,2,3,....,N进行比赛,比赛结束后,裁判委员会要将所有参赛队伍从前往后依次排名,但现 ...

  4. AWS的EC2实例搭建服务器使用stackoverflow教程

    作为一个技术开发工程师, 一个给力的问题解决方案搜索引擎是十分必要的, stackoverflow作为一个码农必备神器, 存在访问不稳定,有时候打不开的问题,下面介绍如何在亚马逊云服务器上搭建属于自己 ...

  5. Azure基础(三)- Azure的物理架构和服务保证

    Azure fundamentals - Core Cloud Services - Azure architecture and service guarantees Azure provides ...

  6. ORA-00600: 内部错误代码, 参数: [kcm_headroom_warn_1], [], [], [], [], [], [], [], [], [], [], []

    SQL*Plus: Release 11.2.0.4.0 Production on 星期三 1月 1 08:53:48 2003 Copyright (c) 1982, 2013, Oracle. ...

  7. selenium--控制浏览器和简单元素操作

    控制浏览器1.driver.maximize_window() #浏览器最大化2.driver.set_windows_size(480*800) #浏览器设置成移动端大小(480*800),参数数字 ...

  8. debug apk logCat

    Microsoft Windows [版本 10.0.15063](c) 2017 Microsoft Corporation.保留所有权利. C:\Users\Administrator>ad ...

  9. Sqlite3入门简记

    一,安装Sqlite3 1.入门时看http://www.runoob.com/sqlite/sqlite-intro.html,说的简单,但是适合入门 2.在终端输入sqlite3,没有返回信息,表 ...

  10. cygwin 安装 apt-cyg

    apt-cyg apt-cyg is a Cygwin package manager. It includes a command-line installer for Cygwin which c ...