bzoj 3513: [MUTC2013]idiots FFT
bzoj 3513: [MUTC2013]idiots FFT
链接
思路
参考了学姐TRTTG的题解
统计合法方案,最后除以总方案。
合法方案要不好统计,统计不合法方案。
\(a+b<=c\)的个数
f[i]是i出现的个数
g[i]表示a+b=i的个数,a<=b
这个可以fft加速到\(nlogn\)统计.
具体的,fft算出ff的卷积,减去自己自己的贡献,然后/2就是了g[i]。
不合法方案数就是:\(\sum f[i]*g[i]\)
最终答案是\(ans=\frac{C_n^3-tot}{C_n^3}\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=4e5+7;
const double Pi=acos(-1.0);
int read() {
int x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
int n,m,r[N],limit=1,l;
struct Complex {
double x,y;
Complex(double xx=0,double yy=0) {x=xx,y=yy;}
}a[N],b[N];
Complex operator + (Complex a,Complex b) {return Complex(a.x+b.x,a.y+b.y);}
Complex operator - (Complex a,Complex b) {return Complex(a.x-b.x,a.y-b.y);}
Complex operator * (Complex a,Complex b) {return Complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
void fft(Complex *a,int type) {
for(int i=0;i<=limit;++i)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int mid=1;mid<limit;mid<<=1) {
Complex Wn(cos(Pi/mid),type*sin(Pi/mid));
for(int i=0;i<limit;i+=mid<<1) {
Complex w(1,0);
for(int j=0;j<mid;++j,w=w*Wn) {
Complex x=a[i+j],y=w*a[i+j+mid];
a[i+j]=x+y;
a[i+j+mid]=x-y;
}
}
}
}
ll f[N],g[N],sum[N];
void solve() {
memset(a,0,sizeof(a));
memset(f,0,sizeof(f));
n=read();
for(int i=1;i<=n;++i) f[read()]++;
for(int i=0;i<=limit;++i) a[i].x=f[i];
fft(a,1);
for(int i=0;i<=limit;++i) a[i]=a[i]*a[i];
fft(a,-1);
for(int i=0;i<=limit;++i)
g[i]=(int)(a[i].x/limit+0.5);
for(int i=0;i<=limit;++i) g[i*2]-=f[i];
for(int i=0;i<=limit;++i) g[i]>>=1;
for(int i=0;i<=limit;++i) g[i]+=g[i-1];
ll tot=0;
for(int i=0;i<=limit;++i) tot+=1LL*f[i]*g[i];
ll ans=1LL*n*(n-1)*(n-2)/6;
printf("%.7lf\n",(double)(ans-tot)/ans);
}
int main() {
while(limit<=200000) limit<<=1,l++;
for(int i=0;i<=limit;++i)
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int T=read();T;T--) solve();
return 0;
}
bzoj 3513: [MUTC2013]idiots FFT的更多相关文章
- bzoj 3513 [MUTC2013]idiots FFT 生成函数
[MUTC2013]idiots Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 806 Solved: 265[Submit][Status][Di ...
- BZOJ 3513: [MUTC2013]idiots
3513: [MUTC2013]idiots Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 476 Solved: 162[Submit][Stat ...
- bzoj 3513: [MUTC2013]idiots【生成函数+FFT】
想了好长时间最后发现真是石乐志 第一反应就是两边之和大于第三边,但是这个东西必须要满足三次-- 任意的两边之和合通过生成函数套路+FFT求出来(记得去掉重复选取的),然后这任意两边之和大于任意第三边可 ...
- 【刷题】BZOJ 3513 [MUTC2013]idiots
Description 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. Input 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是 ...
- BZOJ3513[MUTC2013]idiots——FFT+生成函数
题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...
- 【bzoj3513】[MUTC2013]idiots FFT
题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...
- bzoj千题计划168:bzoj3513: [MUTC2013]idiots
http://www.lydsy.com/JudgeOnline/problem.php?id=3513 组成三角形的条件:a+b>c 其中,a<c,b<c 若已知 两条线段之和=i ...
- [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)
[BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...
- 2019.01.02 bzoj3513: [MUTC2013]idiots(fft)
传送门 fftfftfft经典题. 题意简述:给定nnn个长度分别为aia_iai的木棒,问随机选择3个木棒能够拼成三角形的概率. 思路:考虑对于木棒构造出生成函数然后可以fftfftfft出两个木 ...
随机推荐
- poj1416
#include<iostream> using namespace std; int target,datanum; ],temproad[]; int N,flag,maxsum; ] ...
- Python——开发一个自动化微信投票器【附代码实例方法】
一个研究Python实践,最近研究一个投票的东东,主要是想测试利用Python实现刷微信投票. 本文纯粹为了记录一下 webdriver直接操作页面按钮的方法: #!/usr/bin/python # ...
- [转]k8s核心概念
转载自 https://blog.csdn.net/real_myth/article/details/78719244 什么是kubernetes 首先,他是一个全新的基于容器技术的分布式架构领先方 ...
- kubernetes集群应用部署实例
今天,我们将要带来入门hello world示例,它是一个web留言板应用,基于PHP+Redis的两层分布式架构的web应用,前端PHP web网站通过访问后端Redis数据库完成用户留言的查询和添 ...
- Python3学习之路~7.3 反射
python中的反射功能是由以下四个内置函数提供:hasattr.getattr.setattr.delattr,该四个函数分别用于对对象内部执行:检查是否含有某成员.获取成员.设置成员.删除成员. ...
- 136A
#include <stdio.h> #include <string.h> #define MAXSIZE 110 int main() { int giv[MAXSIZE] ...
- linux 查看磁盘文件大小
du -sh : 查看当前目录总共占的容量.而不单独列出各子项占用的容量 du -lh --max-depth=1 : 查看当前目录下一级子文件和子目录占用的磁盘容量 df -h 查看整个服务器的磁盘 ...
- python-soap接口请求
一.环境准备 方法一: >pip3 install suds >pip3 install suds-jurko 因在线安装报错,所以直接下载安装包. 方法二: 1.suds库下载地址:ht ...
- EntityFramework Core:版本不一致问题
code first 更新数据库时候报版本不对或者未找到错误 解决方法: 在项目文件中添加以下节点: <PropertyGroup> <OutputType>Library&l ...
- java基础语法(三大基础)
一.标识符 标识符是用于包名.类名.变量名.方法名.对象名.数组名.集合名等的命名: 规则: (1)可以使用英文字母.阿拉伯数字.下划线_.$符号 (2)不能以数字开头 (3)不能使用Java中的 ...