【SPOJ】DIVCNTK min_25筛
题目大意
给你 \(n,k\),求
\]
对 \(2^{64}\) 取模。
题解
一个min_25筛模板题。
令 \(f(n)=\sigma_0(n^k)\),那么 \(S_k(n)=\sum_{i=1}^nf(i)\),而且
f(1)&=1\\
f(p)&=k+1\\
f(p^c)&=kc+1
\end{cases}
\]
直接上min_25筛就好了。
时间复杂度:\(O(\frac{n^\frac{3}{4}}{\log n})\)
某些实现可能会有一点微小的细节。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<functional>
#include<cmath>
#include<assert.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const int M=100010;
int pri[M],cnt,b[M];
ll f1[M],f2[M];
void init()
{
for(int i=2;i<=100000;i++)
{
if(!b[i])
pri[++cnt]=i;
for(int j=1;j<=cnt&&i*pri[j]<=100000;j++)
{
b[i*pri[j]]=1;
if(i%pri[j]==0)
break;
}
}
pri[cnt+1]=100001;
}
ll n,k;
int m;
ll dfs(ll x,int y)
{
if(x<=1||x<pri[y])
return 0;
if(pri[y]>m)
return (x<=m?f1[x]:f2[n/x])-f1[m];
ll s=(x<=m?f1[x]:f2[n/x])-f1[pri[y]-1];
for(int i=y;i<=cnt&&(ll)pri[i]*pri[i]<=x;i++)
{
ll x1=x/pri[i];
for(int j=1;x1>=pri[i];j++,x1/=pri[i])
s+=dfs(x1,i+1)*(j*k+1)+((j+1)*k+1);
}
return s;
}
void solve()
{
scanf("%lld%lld",&n,&k);
m=sqrt(n)+0.5;
int mx=n/(m+1);
for(int i=2;i<=m;i++)
f1[i]=i-1;
for(int i=1;i<=mx;i++)
f2[i]=n/i-1;
for(int i=1;i<=cnt&&pri[i]<=m;i++)
{
ll x=f1[pri[i]-1];
int n1=min((ll)mx/pri[i],n/pri[i]/pri[i]);
int n2=min((ll)mx,n/pri[i]/pri[i]);
for(int j=1;j<=n1;j++)
f2[j]-=f2[j*pri[i]]-x;
for(int j=n1+1;j<=n2;j++)
f2[j]-=f1[n/j/pri[i]]-x;
for(int j=m;j>=(ll)pri[i]*pri[i];j--)
f1[j]-=f1[j/pri[i]]-x;
}
for(int i=2;i<=m;i++)
f1[i]*=k+1;
for(int i=1;i<=mx;i++)
f2[i]*=k+1;
ll ans=dfs(n,1);
ans++;
printf("%llu\n",ans);
}
int main()
{
open("divcntk");
int t;
scanf("%d",&t);
init();
while(t--)
solve();
return 0;
}
【SPOJ】DIVCNTK min_25筛的更多相关文章
- Min_25 筛小结
Min_25 筛这个东西,完全理解花了我很长的时间,所以写点东西来记录一些自己的理解. 它能做什么 对于某个数论函数 \(f\),如果满足以下几个条件,那么它就可以用 Min_25 筛来快速求出这个函 ...
- min_25 筛学习小记
min_25筛 由 dalao min_25 发明的筛子,据说时间复杂度是极其优秀的 \(O(\frac {n^{\frac 3 4}} {\log n})\),常数还小. 1. 质数 \(k\) 次 ...
- 【UOJ448】【集训队作业2018】人类的本质 min_25筛
题目大意 给你 \(n,m\),求 \[ \sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,x_1),\gcd(i, ...
- Min_25 筛 学习笔记
原文链接https://www.cnblogs.com/zhouzhendong/p/Min-25.html 前置技能 埃氏筛法 整除分块(这里有提到) 本文概要 1. 问题模型 2. Min_25 ...
- UOJ188 Sanrd Min_25筛
传送门 省选之前做数论题会不会有Debuff啊 这道题显然是要求\(1\)到\(x\)中所有数第二大质因子的大小之和,如果不存在第二大质因子就是\(0\) 线性筛似乎可以做,但是\(10^{11}\) ...
- 【51NOD1847】奇怪的数学题 min_25筛
题目描述 记\(sgcd(i,j)\)为\(i,j\)的次大公约数. 给你\(n\),求 \[ \sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k \] 对\(2^{32}\) ...
- 【51NOD1965】奇怪的式子 min_25筛
题目描述 给你\(n\),求 \[ \prod_{i=1}^n{\sigma_0(i)}^{i+\mu(i)} \] 对\({10}^{12}+39\)取模. \(\sigma_0(i)\)表示约数个 ...
- min_25筛
min_25筛 用来干啥? 考虑一个积性函数\(F(x)\),用来快速计算前缀和\[\sum_{i=1}^nF(i)\] 当然,这个积性函数要满足\(F(x),x\in Prime\)可以用多项式表示 ...
- 关于 min_25 筛的入门以及复杂度证明
min_25 筛是由 min_25 大佬使用后普遍推广的一种新型算法,这个算法能在 \(O({n^{3\over 4}\over log~ n})\) 的复杂度内解决所有的积性函数前缀和求解问题(个人 ...
随机推荐
- MyCat | 分库分表实践
引言 先给大家介绍2个概念:数据的切分(Sharding)根据其切分规则的类型,可以分为两种切分模式. 切分模式 一种是按照不同的表(或者Schema)来切分到不同的数据库(主机)之上,这种切可以称之 ...
- 当我们按下电源键,Android 究竟做了些什么?
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由goo发表于云+社区专栏 相信我们对Android系统都不陌生,而Android系统博大精深,被各种各样的智能设备承载的同时,我们会否 ...
- django源码分析 LazySetting对象
一.django中通过LazySetting对象来获取项目的配置,LazySetting对象有什么特性?为什么使用这个对象? LazySetting顾名思义,就是延迟获取配置内容.比如,我们定义了一个 ...
- postgreSQL备份数据
1.pg_dump 备份单一数据库 pg_dump仅导出数据库结构: pg_dump -U TestRole1 -s -f TestDb1.sql TestDb1 2.全部备份采用pg_dumpall ...
- More Moore and More than Moore
More Moore and More than Moore ——基于硅光电子学探讨摩尔定律的延续和发展 1965年4月,<电子学>杂志第114页上刊载了Intel创始人之一戈登·摩尔(G ...
- 5.3Python数据处理篇之Sympy系列(三)---简化操作
目录 5.3简化操作 目录 前言 (一)有理数与多项式的简化 1.最简化-simplify() 2.展开-expand() 3.提公因式-factor() 4.合并同类项-ceiling() 5.简化 ...
- LeetCode算法题-Degree of an Array(Java实现)
这是悦乐书的第294次更新,第312篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第162题(顺位题号是697).给定一个由正整数组成的非空数组,该数组的度数被定义为任意 ...
- 【vue】vue全家桶
vue-router(http://router.vuejs.org) vuex(https://vuex.vuejs.org/zh/guide/) vue-resource(https://gith ...
- service docker start后docker stop/waiting的解决方法
在某次强行对机子断电后,再开机后发现docker没启动 运行service docker start显示docker start/running, process xxxx,之后不一会儿就停止了, 再 ...
- multiset的erase()操作中出现跳过元素的问题
昨天,我写了一个multiset去重,让tt指向it的后面第一个元素,若重复则删除这2个元素,并令it=tt,it++:来使it指向tt的下一个元素(我想指向原it的后面第2个元素,并认为tt的下一个 ...