1 问题描述

引用自百度百科:

如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量(strongly connected components)。

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

2 解决方案

下面代码所使用图:

package com.liuzhen.practice;

import java.util.ArrayList;
import java.util.Scanner;
import java.util.Stack; public class Main {
public static int MAX = 100;
public static int count; //用于对图中顶点遍历的次序进行计数
public static int n;
public static int[] DFN = new int[MAX]; //记录图中每个节点的DFS遍历的时间戳(即次序)
public static int[] Low = new int[MAX]; //记录每个顶点的所在树的根节点编号
public static boolean[] inStack = new boolean[MAX]; //用于记录当前节点是否在栈中
public static Stack<Integer> stack; public void init(int n) {
count = 0;
stack = new Stack<Integer>();
for(int i = 0;i <= n;i++) {
DFN[i] = -1; //代表顶点i未被遍历
Low[i] = -1;
inStack[i] = false;
}
} static class edge {
public int a; //边的起点
public int b; //边的终点 edge(int a, int b) {
this.a = a;
this.b = b;
}
} public void dfs(ArrayList<edge>[] map, int start) {
DFN[start] = count++;
Low[start] = DFN[start];
stack.push(start);
inStack[start] = true;
int j = start;
for(int i = 0;i < map[start].size();i++) {
j = map[start].get(i).b;
if(DFN[j] == -1) { //顶点j未被遍历
dfs(map, j);
Low[start] = Math.min(Low[start], Low[j]);
} else if(inStack[j]) {
Low[start] = Math.min(Low[start], DFN[j]);
}
}
if(DFN[start] == Low[start]) {
System.out.print("强连通分量:");
do {
j = stack.pop();
System.out.print(j+" ");
inStack[j] = false;
} while(start != j);
System.out.println();
}
return;
} public static void main(String[] args) {
Main test = new Main();
Scanner in = new Scanner(System.in);
n = in.nextInt();
test.init(n);
int k = in.nextInt(); //有向图的边数目
@SuppressWarnings("unchecked")
ArrayList<edge>[] map = new ArrayList[n + 1];
for(int i = 0;i <= n;i++)
map[i] = new ArrayList<edge>();
in.nextLine();
for(int i = 0;i < k;i++) {
int a = in.nextInt();
int b = in.nextInt();
map[a].add(new edge(a, b));
}
test.dfs(map, 1);
}
}

运行结果:

8
2
3
4
4
5
1
6
6
强连通分量:6
强连通分量:5
强连通分量:3 4 2 1

Java实现有向图强连通分量的Tarjan算法的更多相关文章

  1. 算法笔记_144:有向图强连通分量的Tarjan算法(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...

  2. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  3. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  4. 【转载】有向图强连通分量的Tarjan算法

    转载地址:https://www.byvoid.com/blog/scc-tarjan [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly conn ...

  5. 有向图强连通分量的Tarjan算法(转)

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  6. 『图论』有向图强连通分量的Tarjan算法

    在图论中,一个有向图被成为是强连通的(strongly connected)当且仅当每一对不相同结点u和v间既存在从u到v的路径也存在从v到u的路径.有向图的极大强连通子图(这里指点数极大)被称为强连 ...

  7. 有向图强连通分量的Tarjan算法及模板

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...

  8. 强连通分量的Tarjan算法

    资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...

  9. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

随机推荐

  1. Python自动生成100以内加减乘除混合运算题

    import random from random import choice ops = ('+','-','×','÷') ans = [] i=0 while i < 100 : op1 ...

  2. Python 简明教程 --- 1,搭建Python 环境

    微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 人生苦短,我用Python. -- 龟叔T恤 Python 是一门解释型语言,所以要想运行Pytho ...

  3. Python --元组与列表的差异

    · Python中的元组与列表类似,不同之处是元组的元素不能修改 · 元组使用小括号,不使用括号也可以,列表使用方括号 for example:

  4. 【WEB自动化】【第一节】【Xpath和CSS元素定位】

    目前自动化测试开始投入WEB测试,使用RF及其selenium库,模拟对WEB页面进行操作,此过程中首先面对的问题就是对WEB页面元素的定位,几乎所有的关键字都需要传入特定的WEB页面元素,因此掌握常 ...

  5. DPDK IP分片及重组库(学习笔记)

    1 前置知识学习 1.1 MTU MTU是最大传输单元( Maximum Transmission Unit)的缩写,指一个接口无需分片所能发送的数据包的最大字节数.  MTU范围在46 ~ 1500 ...

  6. mysql小白系列_03 体系结构-线程池

    thread pool的原理是什么? 为什么用double write就能解决page坏的问题? Innodb redo log 与 binlog有什么区别?有了Innodb redo log为什么还 ...

  7. 使用Html5对图片加水印及多图合成

                                                                             转载请注明原地址:                   ...

  8. vscode环境配置(三)——解决控制台终端中文输出乱码

    由于系统终端默认编码为GBK,所以需要修改为UTF-8 方法一 打开cmd输入chcp查看编码格式,查看以及修改如下图所示: 方法二

  9. JSP页面基础用法和方法查询

    导包jar:jstl.jar    standard.jar jsp嵌套java代码,使用jsp脚本:1)<%java代码%> ----- 内部的java代码翻译到service方法的内部 ...

  10. 通过swagger json一键解析为html页面、导出word和excel的解析算法分享

    写在前面: 完全通过Spring Boot工程 Java代码,将swagger json 一键解析为html页面.导出word和execel的解析算法,不需要任何网上那些类似于“SwaggerMark ...