题目

On the well-known testing system MathForces, a draw of nnn rating units is arranged. The rating will be distributed according to the following algorithm: if kkk participants take part in this event, then the nnn rating is evenly distributed between them and rounded to the nearest lower integer, At the end of the drawing, an unused rating may remain — it is not given to any of the participants.

For example, if n=5n=5n=5 and k=3k=3k=3, then each participant will recieve an 111 rating unit, and also 222 rating units will remain unused. If n=5n=5n=5, and k=6k=6k=6, then none of the participants will increase their rating.

Vasya participates in this rating draw but does not have information on the total number of participants in this event. Therefore, he wants to know what different values of the rating increment are possible to get as a result of this draw and asks you for help.

For example, if n=5n=5n=5, then the answer is equal to the sequence 0,1,2,50,1,2,50,1,2,5. Each of the sequence values (and only them) can be obtained as ⌊n/k⌋ for some positive integer kkk (where ⌊x⌋⌊x⌋⌊x⌋ is the value of xxx rounded down): 0=⌊5/7⌋,1=⌊5/5⌋,2=⌊5/2⌋,5=⌊5/1⌋0=⌊5/7⌋, 1=⌊5/5⌋, 2=⌊5/2⌋, 5=⌊5/1⌋0=⌊5/7⌋,1=⌊5/5⌋,2=⌊5/2⌋,5=⌊5/1⌋.

Write a program that, for a given nnn, finds a sequence of all possible rating increments.

输入

The first line contains integer number t(1≤t≤10)t (1≤t≤10)t(1≤t≤10) — the number of test cases in the input. Then ttt test cases follow.

Each line contains an integer n(1≤n≤109)n(1≤n≤10^9)n(1≤n≤109) — the total number of the rating units being drawn.

输出

Output the answers for each of ttt test cases. Each answer should be contained in two lines.

In the first line print a single integer mmm — the number of different rating increment values that Vasya can get.

In the following line print mmm integers in ascending order — the values of possible rating increments.

题目大意

给定ttt组数据,每组包含一个整数n(1≤n≤109)n(1≤n≤10^9)n(1≤n≤109),求出所有n被整除能得出的商。

想法

朴素想法:枚举1−n1-n1−n,每个除一遍,加到setsetset中去重,然后直接遍历输出即可。

复杂度O(tnlog⁡n)O(tn\log n)O(tnlogn),死路一条。

考虑到x×x=nx\times x=nx×x=n,我们可以最多枚举到n\sqrt nn​,在枚举时同时加入xxx和n/xn/xn/x,那么式子看起来是这样:

n÷(n÷x)=xn \div (n \div x) = xn÷(n÷x)=x

n÷x=n÷xn \div x = n \div xn÷x=n÷x

即可保证所有整除商都被加入setsetset中。

此时复杂度O(tnlog⁡n)O(t\sqrt n\log n)O(tn​logn),能过。

代码如下:

#include <cstdio>
#include <set>
#include <cmath>
using namespace std;
int t, n;
set<int> out;
int main()
{
scanf("%d", &t);
while (t--)
{
out.clear();
scanf("%d", &n);
out.insert(0);
int lim = sqrt(n);
for (int i = 1; i <= lim; ++i)
{
out.insert(i);
out.insert(n / i);
}
printf("%d\n",out.size());
for (set<int>::iterator it = out.begin(); it != out.end(); ++it)
printf("%d ", *it);
printf("\n");
}
return 0;
}

但事实上,还有更简单的方法:我们可以去掉这个setsetset!

在枚举x=[1,n]x = [1,\sqrt n]x=[1,n​]时,我们会发现,每个xxx都是可以取到且不重复的,而n÷xn \div xn÷x实际上也是不重复的。证明如下:

设n÷x1=k1,n÷x2=k2,其中x1>x2设n \div x_1 = k_1,n \div x_2 = k_2,其中x_1 > x_2设n÷x1​=k1​,n÷x2​=k2​,其中x1​>x2​

则有:

k1×x1+t1=n,t1∈[0,x1)k_1 \times x_1 + t_1 = n,t1 \in [0,x_1)k1​×x1​+t1​=n,t1∈[0,x1​)

k2×x2+t2=n,t2∈[0,x2)k_2 \times x_2 + t_2 = n,t2 \in [0,x_2)k2​×x2​+t2​=n,t2∈[0,x2​)

假如k1=k2=kk_1 = k_2 = kk1​=k2​=k,那么:

k×x1+t1=k×x2+t2k \times x_1 + t_1 = k \times x_2 + t_2k×x1​+t1​=k×x2​+t2​

k×(x1−x2)=t2−t1k \times (x_1 - x_2) = t_2 - t_1k×(x1​−x2​)=t2​−t1​

k=(t2−t1)(x1−x2)k = \frac{(t_2 - t_1)}{(x_1 - x_2)}k=(x1​−x2​)(t2​−t1​)​

然而:

t2−t1∈(−x1,x2−x1)t_2 - t_1 \in (-x_1,x_2-x_1)t2​−t1​∈(−x1​,x2​−x1​)

那么k∈(−x1x1−x2,x2−x1x1−x2)k \in (\frac{-x_1}{x_1 - x_2},\frac{x_2-x_1}{x_1-x_2})k∈(x1​−x2​−x1​​,x1​−x2​x2​−x1​​)

显然此时k<0k<0k<0,产生了矛盾。

因此,对于x∈[1,n]x \in [1,\sqrt n]x∈[1,n​],我们得到的所有的xxx和n÷xn \div xn÷x即为答案。

顺序枚举xxx,将n÷xn \div xn÷x存入另一个数组中,显然该数组中的数单调递减。

还需要特判最后x=nx = \sqrt nx=n​时,x=n÷xx = n \div xx=n÷x的情况。

输出答案直接输出[0,n][0,\sqrt n][0,n​],再逆序输出保存数组中的结果即可。

复杂度O(tn)O(t\sqrt n)O(tn​),已经相当优秀了。

还有一种整除分块的方法,本蒟蒻还不会……

Code

#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int t, n, lim, cnt;
int save[50000];
int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
lim = sqrt(n);
cnt = 0;
for (register int i = 1; i <= lim; ++i)
save[++cnt] = n / i;
if (cnt && lim == save[cnt]) //特判,注意有可能输入为0,这样cnt会被减为负数……
--cnt;
printf("%d\n", cnt + lim + 1);
for (int i = 0; i <= lim; ++i)
printf("%d ", i);
for (int i = cnt; i; --i)
printf("%d ", save[i]);
putchar('\n');
}
return 0;
}

[Codeforces]1263C Everyone is a Winner!的更多相关文章

  1. Codeforces Beta Round #2 A. Winner 水题

    A. Winner 题目连接: http://www.codeforces.com/contest/2/problem/A Description The winner of the card gam ...

  2. Codeforces Beta Round #2 A. Winner

    A. Winner time limit per test 1 second memory limit per test 64 megabytes input standard input outpu ...

  3. [Codeforces] #603 (Div. 2) A-E题解

    [Codeforces]1263A Sweet Problem [Codeforces]1263B PIN Code [Codeforces]1263C Everyone is a Winner! [ ...

  4. 『题解』Codeforces2A Winner

    Portal Portal1: Codeforces Portal2: Luogu Description The winner of the card game popular in Berland ...

  5. codeforces 2A Winner (好好学习英语)

    Winner 题目链接:http://codeforces.com/contest/2/problem/A ——每天在线,欢迎留言谈论. 题目大意: 最后结果的最高分 maxscore.在最后分数都为 ...

  6. CodeForces 2A - Winner(模拟)

    题目链接:http://codeforces.com/problemset/problem/2/A A. Winner time limit per test 1 second memory limi ...

  7. CodeForces 2A Winner

    Winner Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  8. Codeforces 2A :winner

    A. Winner time limit per test 1 second memory limit per test 64 megabytes input standard input outpu ...

  9. codeforces Winner

    /* * Winner.cpp * * Created on: 2013-10-13 * Author: wangzhu */ /** * 先找出所有选手的分数和中最大的分数和,之后在所有选手的分数和 ...

随机推荐

  1. Steam 游戏 《The Vagrant(流浪者)》修改器制作-[先使用CE写,之后有时间的话改用CheatMaker](2020年寒假小目标08)

    日期:2020.02.07 博客期:146 星期五 [温馨提示]: 只是想要修改器的网友,可以直接点击此链接下载: 只是想拿CT文件的网友,可以直接点击此链接下载: 没有博客园账号的网友,可以将页面下 ...

  2. Java8新特性——Optional

    前言 在开发中,我们常常需要对一个引用进行判空以防止空指针异常的出现.Java8引入了Optional类,为的就是优雅地处理判空等问题.现在也有很多类库在使用Optional封装返回值,比如Sprin ...

  3. Ionic3记录之核心代码分析

    app.module.ts app的根模块,一些插件的引用需要在这里声明,告诉APP如何组装应用: app.componet.ts app的根组件,主要用来APP启动时和启动后的操作;

  4. VS Code 入门

    将VSCode设置成中文语言环境 快捷键[Ctrl+Shift+P]—输入[Configure Display Language]—将“en”改为“zh-CN”—打开extention输入[Chine ...

  5. electron-edge-js 环境搭建

    确保nodejs环境 为 10.X  (因为edge的编译需要node对应版本的支持,太新的node不包含对应edge的编译) 1.创建工程2.使用npm init初始化程序信息3.使用npm ins ...

  6. [Pytorch数据集下载] 下载MNIST数据缓慢的方案

    步骤一 首先访问下面的网站,手工下载数据集.http://yann.lecun.com/exdb/mnist/ 把四个压缩包下载到任意文件夹,以便之后使用. 步骤二 把自己电脑上已经下载好的数据集的文 ...

  7. CSS - 滑动门技术

    1. 概念: 1.1 为了使各种特殊形状的背景能够自适应元素中文本内容的多少,出现了CSS滑动门技术. 1.2 使各种特殊形状的背景能够自由拉伸滑动,以适应元素内部的文本内容,可用性更强. 1.3 最 ...

  8. Java基于redis实现分布式锁(SpringBoot)

    前言 分布式锁,其实原理是就是多台机器,去争抢一个资源,谁争抢成功,那么谁就持有了这把锁,然后去执行后续的业务逻辑,执行完毕后,把锁释放掉. 可以通过多种途径实现分布式锁,例如利用数据库(mysql等 ...

  9. 初始化加载和导航时脚本执行的函数(初始化脚本执行环境)page.evaluateOnNewDocument

    /** * Copyright 2017 Google Inc., PhantomJS Authors All rights reserved. * * Licensed under the Apac ...

  10. nginx 安装部署前篇

    官网:https://nginx.org/ 特性:既可以作为HTTP服务器,也可以作为反向代理服务器或者邮件服务器或者邮件服务器:能够快递响应静态页面的请求:支持 Fast CGI.SSL.Virtu ...