[Codeforces]1263C Everyone is a Winner!
题目
On the well-known testing system MathForces, a draw of nnn rating units is arranged. The rating will be distributed according to the following algorithm: if kkk participants take part in this event, then the nnn rating is evenly distributed between them and rounded to the nearest lower integer, At the end of the drawing, an unused rating may remain — it is not given to any of the participants.
For example, if n=5n=5n=5 and k=3k=3k=3, then each participant will recieve an 111 rating unit, and also 222 rating units will remain unused. If n=5n=5n=5, and k=6k=6k=6, then none of the participants will increase their rating.
Vasya participates in this rating draw but does not have information on the total number of participants in this event. Therefore, he wants to know what different values of the rating increment are possible to get as a result of this draw and asks you for help.
For example, if n=5n=5n=5, then the answer is equal to the sequence 0,1,2,50,1,2,50,1,2,5. Each of the sequence values (and only them) can be obtained as ⌊n/k⌋ for some positive integer kkk (where ⌊x⌋⌊x⌋⌊x⌋ is the value of xxx rounded down): 0=⌊5/7⌋,1=⌊5/5⌋,2=⌊5/2⌋,5=⌊5/1⌋0=⌊5/7⌋, 1=⌊5/5⌋, 2=⌊5/2⌋, 5=⌊5/1⌋0=⌊5/7⌋,1=⌊5/5⌋,2=⌊5/2⌋,5=⌊5/1⌋.
Write a program that, for a given nnn, finds a sequence of all possible rating increments.
输入
The first line contains integer number t(1≤t≤10)t (1≤t≤10)t(1≤t≤10) — the number of test cases in the input. Then ttt test cases follow.
Each line contains an integer n(1≤n≤109)n(1≤n≤10^9)n(1≤n≤109) — the total number of the rating units being drawn.
输出
Output the answers for each of ttt test cases. Each answer should be contained in two lines.
In the first line print a single integer mmm — the number of different rating increment values that Vasya can get.
In the following line print mmm integers in ascending order — the values of possible rating increments.
题目大意
给定ttt组数据,每组包含一个整数n(1≤n≤109)n(1≤n≤10^9)n(1≤n≤109),求出所有n被整除能得出的商。
想法
朴素想法:枚举1−n1-n1−n,每个除一遍,加到setsetset中去重,然后直接遍历输出即可。
复杂度O(tnlogn)O(tn\log n)O(tnlogn),死路一条。
考虑到x×x=nx\times x=nx×x=n,我们可以最多枚举到n\sqrt nn,在枚举时同时加入xxx和n/xn/xn/x,那么式子看起来是这样:
n÷(n÷x)=xn \div (n \div x) = xn÷(n÷x)=x
n÷x=n÷xn \div x = n \div xn÷x=n÷x
即可保证所有整除商都被加入setsetset中。
此时复杂度O(tnlogn)O(t\sqrt n\log n)O(tnlogn),能过。
代码如下:
#include <cstdio>
#include <set>
#include <cmath>
using namespace std;
int t, n;
set<int> out;
int main()
{
scanf("%d", &t);
while (t--)
{
out.clear();
scanf("%d", &n);
out.insert(0);
int lim = sqrt(n);
for (int i = 1; i <= lim; ++i)
{
out.insert(i);
out.insert(n / i);
}
printf("%d\n",out.size());
for (set<int>::iterator it = out.begin(); it != out.end(); ++it)
printf("%d ", *it);
printf("\n");
}
return 0;
}
但事实上,还有更简单的方法:我们可以去掉这个setsetset!
在枚举x=[1,n]x = [1,\sqrt n]x=[1,n]时,我们会发现,每个xxx都是可以取到且不重复的,而n÷xn \div xn÷x实际上也是不重复的。证明如下:
设n÷x1=k1,n÷x2=k2,其中x1>x2设n \div x_1 = k_1,n \div x_2 = k_2,其中x_1 > x_2设n÷x1=k1,n÷x2=k2,其中x1>x2
则有:
k1×x1+t1=n,t1∈[0,x1)k_1 \times x_1 + t_1 = n,t1 \in [0,x_1)k1×x1+t1=n,t1∈[0,x1)
k2×x2+t2=n,t2∈[0,x2)k_2 \times x_2 + t_2 = n,t2 \in [0,x_2)k2×x2+t2=n,t2∈[0,x2)
假如k1=k2=kk_1 = k_2 = kk1=k2=k,那么:
k×x1+t1=k×x2+t2k \times x_1 + t_1 = k \times x_2 + t_2k×x1+t1=k×x2+t2
k×(x1−x2)=t2−t1k \times (x_1 - x_2) = t_2 - t_1k×(x1−x2)=t2−t1
k=(t2−t1)(x1−x2)k = \frac{(t_2 - t_1)}{(x_1 - x_2)}k=(x1−x2)(t2−t1)
然而:
t2−t1∈(−x1,x2−x1)t_2 - t_1 \in (-x_1,x_2-x_1)t2−t1∈(−x1,x2−x1)
那么k∈(−x1x1−x2,x2−x1x1−x2)k \in (\frac{-x_1}{x_1 - x_2},\frac{x_2-x_1}{x_1-x_2})k∈(x1−x2−x1,x1−x2x2−x1)
显然此时k<0k<0k<0,产生了矛盾。
因此,对于x∈[1,n]x \in [1,\sqrt n]x∈[1,n],我们得到的所有的xxx和n÷xn \div xn÷x即为答案。
顺序枚举xxx,将n÷xn \div xn÷x存入另一个数组中,显然该数组中的数单调递减。
还需要特判最后x=nx = \sqrt nx=n时,x=n÷xx = n \div xx=n÷x的情况。
输出答案直接输出[0,n][0,\sqrt n][0,n],再逆序输出保存数组中的结果即可。
复杂度O(tn)O(t\sqrt n)O(tn),已经相当优秀了。
还有一种整除分块的方法,本蒟蒻还不会……
Code
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int t, n, lim, cnt;
int save[50000];
int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
lim = sqrt(n);
cnt = 0;
for (register int i = 1; i <= lim; ++i)
save[++cnt] = n / i;
if (cnt && lim == save[cnt]) //特判,注意有可能输入为0,这样cnt会被减为负数……
--cnt;
printf("%d\n", cnt + lim + 1);
for (int i = 0; i <= lim; ++i)
printf("%d ", i);
for (int i = cnt; i; --i)
printf("%d ", save[i]);
putchar('\n');
}
return 0;
}
[Codeforces]1263C Everyone is a Winner!的更多相关文章
- Codeforces Beta Round #2 A. Winner 水题
A. Winner 题目连接: http://www.codeforces.com/contest/2/problem/A Description The winner of the card gam ...
- Codeforces Beta Round #2 A. Winner
A. Winner time limit per test 1 second memory limit per test 64 megabytes input standard input outpu ...
- [Codeforces] #603 (Div. 2) A-E题解
[Codeforces]1263A Sweet Problem [Codeforces]1263B PIN Code [Codeforces]1263C Everyone is a Winner! [ ...
- 『题解』Codeforces2A Winner
Portal Portal1: Codeforces Portal2: Luogu Description The winner of the card game popular in Berland ...
- codeforces 2A Winner (好好学习英语)
Winner 题目链接:http://codeforces.com/contest/2/problem/A ——每天在线,欢迎留言谈论. 题目大意: 最后结果的最高分 maxscore.在最后分数都为 ...
- CodeForces 2A - Winner(模拟)
题目链接:http://codeforces.com/problemset/problem/2/A A. Winner time limit per test 1 second memory limi ...
- CodeForces 2A Winner
Winner Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- Codeforces 2A :winner
A. Winner time limit per test 1 second memory limit per test 64 megabytes input standard input outpu ...
- codeforces Winner
/* * Winner.cpp * * Created on: 2013-10-13 * Author: wangzhu */ /** * 先找出所有选手的分数和中最大的分数和,之后在所有选手的分数和 ...
随机推荐
- HTML中的ul标签
UL格式: <ul> <li>Coffee</li> <li>Tea</li> <li>Milk</li> < ...
- ScrollView不设置contentSize属性依然也可以作为底层滚动View(使用masonry设置scrollView的contentSize)
第一步 //下层的scroolView self.baseScrollView = [[UIScrollView alloc] init]; self.baseScrollView.delegate ...
- SVM总结(参考源码ml.hpp)
如何使用,请查阅我的另一篇博客——SVM的使用 1.setType() SVM的类型,默认SVM::C_SVC.具体有C_SVC=100,NU_SVC=101,ONE_CLASS=102,EPS_SV ...
- 2020.02.28 Linux 命令
Cat 语法格式 cat [-AbeEnstTuv] [--help] [--version] fileName 参数说明: -n 或 --number:由 1 开始对所有输出的行数编号. -b ...
- IELTS Simon wr task p3
- VS Code 入门
将VSCode设置成中文语言环境 快捷键[Ctrl+Shift+P]—输入[Configure Display Language]—将“en”改为“zh-CN”—打开extention输入[Chine ...
- iframe结构的网站按F5刷新子页面的实现方式
有的网站或者后台系统由于页面有公共的部分,比如菜单,会把公共的部分放在一个页面,这里称之为父页面,而把具体的内容放入一个iframe中,之后的请求改变iframe的内容.但是这样会有一个问题,因为浏览 ...
- Python 基础之函数初识与函数参数
一.函数初识 定义:满足某一个方法 满足某一个功能#(1)功能(包裹一部分代码 实现某一个功能 达成某一个目的)#(2)可以反复调用,提高代码的复用性,提高开发效率,便于维护管理#(3)函数的基本格式 ...
- SpringCloud+Eureka+Feign+Ribbon的简化搭建流程,加入熔断,网关和Redis缓存[2]
目录 前提:本篇是基于 SpringCloud+Eureka+Feign+Ribbon的简化搭建流程和CRUD练习[1] 的修改与拓展 1.修改consumer的CenterFeign.java,把返 ...
- 5.1 Nginx的基本配置
备注:worker_processes 1(数量建议跟系统CPU的核数相同,例如:2个CPU,每个CPU4核,建议为8),worker_connections 建议小于worker_rlimit_no ...