这题七次方做法显然,但由于我太菜了,想了一会发现也就只会这么多,而且别的毫无头绪。发现直接做不行,那么,容斥!

f[i]为至少i个极值的方案,然后这里需要一些辅助变量,a[i]表示选出i个三维坐标均不相同的i个极大值的方案数,g[i]表示i个极大的数任意一个至少有一维坐标相同的点的个数,h[i]表示g[i]的极值可以同时存在的方案数,那么有f[i]=C(nml,g[i])a[i]h[i](nml-g[i])!。

a[i]很容易求得,就是(∏(n-j)(m-j)(l-j))/i!,其中j∈[0,i),g[i]更好求,就是nml-(n-i)(m-i)(l-i)

然后要进行一些关于上升幂的运算,我这里打不出式子(因为太菜了不会LaTeX),所以就不打了。注意维护g[i]的前缀积,具体细节看code吧。

#include<bits/stdc++.h>
using namespace std;
const int N=5e6+,mod=;
int n,m,l,k,mn,ans,fac[N],inv[N],a[N],f[N],g[N],h[N],pre[N];
int calc(int x){return 1ll*(n-x)*(m-x)%mod*(l-x)%mod;}
int qpow(int a,int b)
{
int ret=;
while(b)
{
if(b&)ret=1ll*ret*a%mod;
a=1ll*a*a%mod,b>>=;
}
return ret;
}
int C(int a,int b){return 1ll*fac[a]*inv[b]%mod*inv[a-b]%mod;}
int main()
{
inv[]=inv[]=fac[]=;for(int i=;i<N;i++)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(int i=;i<N;i++)fac[i]=1ll*fac[i-]*i%mod,inv[i]=1ll*inv[i-]*inv[i]%mod;
int T;scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d",&n,&m,&l,&k);
mn=min(n,min(m,l));
a[]=h[]=pre[]=;
for(int i=;i<=mn;i++)a[i]=1ll*a[i-]*calc(i-)%mod;
for(int i=;i<=mn;i++)g[i]=(1ll*g[i-]+calc(i-)-calc(i)+mod)%mod;
for(int i=;i<=mn;i++)pre[i]=1ll*pre[i-]*g[i]%mod;
pre[mn]=qpow(pre[mn],mod-);
for(int i=mn;i;i--)pre[i-]=1ll*pre[i]*g[i]%mod;
for(int i=;i<=mn;i++)f[i]=1ll*a[i]*pre[i]%mod;
ans=;
for(int i=k;i<=mn;i++)
if((i-k)&)ans=(ans-1ll*C(i,k)*f[i]%mod+mod)%mod;
else ans=(ans+1ll*C(i,k)*f[i])%mod;
printf("%d\n",ans);
}
}

[CTS2019]随机立方体(容斥+组合数学)的更多相关文章

  1. [LOJ#3119][Luogu5400][CTS2019]随机立方体(容斥+DP)

    https://www.cnblogs.com/cjyyb/p/10900993.html #include<cstdio> #include<algorithm> #defi ...

  2. 2015 asia xian regional F Color (容斥 + 组合数学)

    2015 asia xian regional F Color (容斥 + 组合数学) 题目链接http://codeforces.com/gym/100548/attachments Descrip ...

  3. LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演

    传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...

  4. 题解-CTS2019随机立方体

    problem \(\mathtt {loj-3119}\) 题意概要:一个 \(n\times m\times l\) 的立方体,立方体中每个格子上都有一个数,如果某个格子上的数比三维坐标中至少有一 ...

  5. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  6. 【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学

    [BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一 ...

  7. 容斥 + 组合数学 ---Codeforces Round #317 A. Lengthening Sticks

    Lengthening Sticks Problem's Link: http://codeforces.com/contest/571/problem/A Mean: 给出a,b,c,l,要求a+x ...

  8. Luogu5400 CTS2019随机立方体(容斥原理)

    考虑容斥,计算至少有k个极大数的概率.不妨设这k个数对应的格子依次为(k,k,k)……(1,1,1).那么某一维坐标<=k的格子会对这些格子是否会成为极大数产生影响.先将这样的所有格子和一个数集 ...

  9. LOJ3120. 「CTS2019」珍珠 [容斥,生成函数]

    传送门 思路 非常显然,就是要统计有多少种方式使得奇数的个数不超过\(n-2m\).(考场上这个都没想到真是身败名裂了--) 考虑直接减去钦点\(n-2m+1\)个奇数之后的方案数,但显然这样会算重, ...

随机推荐

  1. 使用技巧 --- 与VS Code相关

    目的:修改VS Code的注释文本颜色 S1:假设VS Code的安装路径是 %MVSC% S2:文件资源管理器进入目录 %MVSC%\resources\app\extensions\ S3:该目录 ...

  2. HDU-1114 完全背包+恰好装满问题

    B - Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  3. tortoiseGit 的简单使用说明

    拉取仓库到本地 参考 下面几张图片,把仓库拉取到本地. 本地修改并推送 进入文件夹后,按照 下面几张图片切换到本地的开发分支 当修改完成之后,按照 下面几张图片 的方法把修改推送到远程仓库的开发分支. ...

  4. java基础——深拷贝和浅拷贝的区别

    浅拷贝:对基本数据类型进行值传递,对引用数据类型进行引用传递般的拷贝,此为浅拷贝. 深拷贝:对基本数据类型进行值传递,对引用数据类型船舰一个新的对象,并复制内容,这是深拷贝.

  5. CountDownLatch、CyclicBarrier、Semaphore的使用

    CountDownLatch(计数器) 主线程等待另外三个线程执行完成后再执行 public static void main(String[] args) { //定义一个CountDownLatc ...

  6. java使用BigDecimal 实现随机金额红包拆分算法

    原创代码,引用注明出处:https://www.cnblogs.com/guangxiang/p/12218714.html @Servicepublic class SplitRedPacketsS ...

  7. POJ 1942:Paths on a Grid

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22918   Accepted: 5651 ...

  8. zabbix获取到的数值大于1000之后自动转换成1k

    问题:zabbix在取到的值很大时会自动变成K,M,G 解决方法: 1.修改/var/www/html/zabbix/include/func.inc.php文件(这个文件不一定在这,自己find找下 ...

  9. with和上下文管理器

    with和上下文管理器 如果你有时间阅读源码的习惯,可能会看到一些优秀的代码会出现带有with关键字的语句. 对于系统资源如文件,数据库连接,socket而言,应用程序打开这些资源并执行完业务逻辑之后 ...

  10. spring+mybatis 多数据源切换失败的可能原因

    可能因为,加了事务. // @Transactional(readOnly = false) // 需要事务操作必须加入此注解 就因为加了事务,导致了,问题的出现. 不然setCustomerType ...