作者 | 荔枝boy

目录

  • 深层次网络训练瓶颈:梯度消失,网络退化

  • ResNet简介

  • ResNet解决深度网络瓶颈的魔力

  • ResNet使用的小技巧

  • 总结

深层次网络训练瓶颈:梯度消失,网络退化

深度卷积网络自然的整合了低中高不同层次的特征,特征的层次可以靠加深网络的层次来丰富。从而,在构建卷积网络时,网络的深度越高,可抽取的特征层次就越丰富。所以一般我们会倾向于使用更深层次的网络结构,以便取得更高层次的特征。但是在使用深层次的网络结构时我们会遇到两个问题,梯度消失,梯度爆炸问题和网络退化的问题。

但是当使用更深层的网络时,会发生梯度消失、爆炸问题,这个问题很大程度通过标准的初始化和正则化层来基本解决,这样可以确保几十层的网络能够收敛,但是随着网络层数的增加,梯度消失或者爆炸的问题仍然存在。

还有一个问题就是网络的退化,举个例子,假设已经有了一个最优化的网络结构,是18层。当我们设计网络结构的时候,我们并不知道具体多少层次的网络时最优化的网络结构,假设设计了34层网络结构。那么多出来的16层其实是冗余的,我们希望训练网络的过程中,模型能够自己训练这五层为恒等映射,也就是经过这层时的输入与输出完全一样。但是往往模型很难将这16层恒等映射的参数学习正确,那么就一定会不比最优化的18层网络结构性能好,这就是随着网络深度增加,模型会产生退化现象。它不是由过拟合产生的,而是由冗余的网络层学习了不是恒等映射的参数造成的。

图一

 图二

ResNet简介

ResNet是在2015年有何凯明,张翔宇,任少卿,孙剑共同提出的,ResNet使用了一个新的思想,ResNet的思想是假设我们涉及一个网络层,存在最优化的网络层次,那么往往我们设计的深层次网络是有很多网络层为冗余层的。那么我们希望这些冗余层能够完成恒等映射,保证经过该恒等层的输入和输出完全相同。具体哪些层是恒等层,这个会有网络训练的时候自己判断出来。将原网络的几层改成一个残差块,残差块的具体构造如下图所示:

 图三

可以看到X是这一层残差块的输入,也称作F(x)为残差,x为输入值,F(X)是经过第一层线性变化并激活后的输出,该图表示在残差网络中,第二层进行线性变化之后激活之前,F(x)加入了这一层输入值X,然后再进行激活后输出。在第二层输出值激活前加入X,这条路径称作shortcut连接。

 

ResNet解决深度网络瓶颈的魔力

网络退化问题的解决:

我们发现,假设该层是冗余的,在引入ResNet之前,我们想让该层学习到的参数能够满足h(x)=x,即输入是x,经过该冗余层后,输出仍然为x。但是可以看见,要想学习h(x)=x恒等映射时的这层参数时比较困难的。ResNet想到避免去学习该层恒等映射的参数,使用了如上图的结构,让h(x)=F(x)+x;这里的F(x)我们称作残差项,我们发现,要想让该冗余层能够恒等映射,我们只需要学习F(x)=0。学习F(x)=0比学习h(x)=x要简单,因为一般每层网络中的参数初始化偏向于0,这样在相比于更新该网络层的参数来学习h(x)=x,该冗余层学习F(x)=0的更新参数能够更快收敛,如图所示:

图四

假设该曾网络只经过线性变换,没有bias也没有激活函数。我们发现因为随机初始化权重一般偏向于0,那么经过该网络的输出值为[0.6 0.6],很明显会更接近与[0 0],而不是[2 1],相比与学习h(x)=x,模型要更快到学习F(x)=0。

并且ReLU能够将负数激活为0,过滤了负数的线性变化,也能够更快的使得F(x)=0。这样当网络自己决定哪些网络层为冗余层时,使用ResNet的网络很大程度上解决了学习恒等映射的问题,用学习残差F(x)=0更新该冗余层的参数来代替学习h(x)=x更新冗余层的参数。

这样当网络自行决定了哪些层为冗余层后,通过学习残差F(x)=0来让该层网络恒等映射上一层的输入,使得有了这些冗余层的网络效果与没有这些冗余层的网络效果相同,这样很大程度上解决了网络的退化问题。

梯度消失或梯度爆炸问题的解决:

我们发现很深的网络层,由于参数初始化一般更靠近0,这样在训练的过程中更新浅层网络的参数时,很容易随着网络的深入而导致梯度消失,浅层的参数无法更新。

图五

可以看到,假设现在需要更新b1,w2,w3,w4参数因为随机初始化偏向于0,通过链式求导我们会发现,w4w3w2相乘会得到更加接近于0的数,那么所求的这个b1的梯度就接近于0,也就产生了梯度消失的现象。

ResNet最终更新某一个节点的参数时,由于h(x)=F(x)+x,由于链式求导后的结果如图所示,不管括号内右边部分的求导参数有多小,因为左边的1的存在,并且将原来的链式求导中的连乘变成了连加状态(正是 ),都能保证该节点参数更新不会发生梯度消失或梯度爆炸现象。

图六

这样ResNet在解决了阻碍更深层次网络优化问题的两个重要问题后,ResNet就能训练更深层次几百层乃至几千层的网络并取得更高的精确度了。

 

ResNet使用的小技巧

这里是应用了ResNet的网络图,这里如果遇到了h(x)=F(x)+x中x的维度与F(x)不同的维度时,我们需要对identity加入Ws来保持Ws*x的维度与F(x)的维度一致。

x与F(x)维度相同时:

x与F(x)维度不同时:

下边是ResNet的网络结构图:

图七

使用1*1卷积减少参数和计算量:

如果用了更深层次的网络时,考虑到计算量,会先用1*1的卷积将输入的256维降到64维,然后通过1*1恢复。这样做的目的是减少参数量和计算量。

图八

左图是ResNet34,右图是ResNet50/101/152。这一个模块称作building block,右图称之为bottleneck design。在面对50,101,152层的深层次网络,意味着有很大的计算量,因此这里使用1*1卷积先将输入进行降维,然后再经过3*3卷积后再用1*1卷积进行升维。使用1*1卷积的好处是大大降低参数量计算量。

总结

通过上述的学习,你应该知道了,现如今大家普遍认为更好的网络是建立在更宽更深的网络基础上,当你需要设计一个深度网络结构时,你永远不知道最优的网络层次结构是多少层,一旦你设计的很深入了,那势必会有很多冗余层,这些冗余层一旦没有成功学习恒等变换h(x)=x,那就会影响网络的预测性能,不会比浅层的网络学习效果好从而产生退化问题。

ResNet的过人之处,是他很大程度上解决了当今深度网络头疼的网络退化问题和梯度消失问题。使用残差网络结构h(x)=F(x)+x代替原来的没有shortcut连接的h(x)=x,这样更新冗余层的参数时需要学习F(x)=0比学习h(x)=x要容易得多。而shortcut连接的结构也保证了反向传播更新参数时,很难有梯度为0的现象发生,不会导致梯度消失。

这样,ResNet的构建,使我们更朝着符合我们的直觉走下去,即越深的网络对于高级抽象特征的提取和网络性能更好,不用在担心随着网络的加深发生退化问题了。

近段时间,准备持续发表一些CNN常见的网络模型讲解。好了,今天的十分钟就带你一起学会ResNet,下次的十分钟我们再见。

十分钟一起学会ResNet残差网络的更多相关文章

  1. 跟我学算法-图像识别之图像分类(下)(GoogleNet网络, ResNet残差网络, ResNext网络, CNN设计准则)

    1.GoogleNet 网络: Inception V1 - Inception V2 - Inception V3 - Inception V4 1. Inception v1 split - me ...

  2. 十分钟一起学会Inception网络

    作者 | 荔枝boy 编辑 | 安可 一.Inception网络简介 二.Inception网络模块 三.Inception网络降低参数计算量 四.Inception网络减缓梯度消失现象 五.Ince ...

  3. 十分钟能学会的框架,MVC+20个常用函数

    LazyPHP(以下简称LP)是一个轻框架. 之所以开发这么一个框架,是因为其他框架给的太多.在高压力的情况下,ORM和盘根错节的对象树反而将简单的页面请求处理复杂化,在调试和性能上带来反面效果. L ...

  4. ResNet 残差网络训练数据

    https://github.com/tornadomeet/ResNet 图片地址: data/trian/cifar10_cifar10.rec data/train/cifar10_val.re ...

  5. GDB十分钟教程【转载于网络爱好者】

    本文写给主要工作在Windows操作系统下而又需要开发一些跨平台软件的程序员朋友,以及程序爱好者. GDB是一个由GNU开源组织发布的.UNIX/LINUX操作系统下的.基于命令行的.功能强大的程序调 ...

  6. 十分钟快速学会Matplotlib基本图形操作

    在学习Python的各种工具包的时候,看网上的各种教程总是感觉各种方法很多很杂,参数的种类和个数也十分的多,理解起来需要花费不少的时间. 所以我在这里通过几个例子,对方法和每个参数都进行详细的解释,这 ...

  7. 深度残差网络——ResNet学习笔记

    深度残差网络—ResNet总结 写于:2019.03.15—大连理工大学 论文名称:Deep Residual Learning for Image Recognition 作者:微软亚洲研究院的何凯 ...

  8. 从头学pytorch(二十):残差网络resnet

    残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路 ...

  9. PHP学习过程_Symfony_(3)_整理_十分钟学会Symfony

    这篇文章主要介绍了Symfony学习十分钟入门教程,详细介绍了Symfony的安装配置,项目初始化,建立Bundle,设计实体,添加约束,增删改查等基本操作技巧,需要的朋友可以参考下 (此文章已被多人 ...

随机推荐

  1. 前端每日实战:39# 视频演示如何用纯 CSS 创作一个表达怀念童年心情的条纹彩虹心特效

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/QxbmxJ 可交互视频教程 此视频 ...

  2. vue+element 表单封成组件(2)

    今天我们继续把时间选择器,多选框和单选框加上 父组件(在昨天的基础上增加): <template> <el-form :model="ruleForm" ref= ...

  3. 小白的springboot之路(十六)、mybatis-plus 的使用

    0-前言 mybatis plus是对mybatis的增强,集成mybatis plus后,简单的CRUD和分页就不用写了,非常方便,五星推荐: 1-集成 1-1.添加依赖 <!-- .集成my ...

  4. A. Reorder the Array

    You are given an array of integers. Vasya can permute (change order) its integers. He wants to do it ...

  5. es6的解构函数

    话说,解构无处不在啊,鄙人自从用了vue写项目以来,总是遇到各路大神莫名其妙的写法,然并未出任何错,查之,然解构也,呜呼哀哉,进而习之. 解构(Destructuring):是将一个数据结构分解为更小 ...

  6. 03 Hibernate入门

    Hibernate 说明 由于JPA是sun公司制定的API规范,所以我们不需要导入额外的JPA相关的jar包,只需要导入JPA的提供商的jar包.我们选择Hibernate作为JPA的提供商,所以需 ...

  7. 设计模式-15命令模式(Command Pattern)

    1.模式动机 在软件设计中,我们经常需要向某些对象发送请求,但是并不知道请求的接收者是谁,也不知道被请求的操作是哪个,我们只需在程序运行时指定具体的请求接收者即可,此时,可以使用命令模式来进行设计,使 ...

  8. 鸟哥的Linux私房菜基础学习篇(第三版)——阅读笔记(二)

    第一章 Linux是什么 1.Linux是什么 一套操作系统 早期的Linux是针对386开发的 具有可移植性 2.Unix及Linux的发展史 1973年,Unix诞生,Ritchie等人以C语言写 ...

  9. 【PG】Greenplum-db-6.2.1的安装部署

    目录 1配置host文件(所有节点) 2 配置用户 3 配置/etc/sysctl.conf文件 4 limit文件,后面添加[不影响安装] 5 安装greenplum-db-6.2.1-rhel7- ...

  10. JVM04——七个GC垃圾收集器,一个都不能少

    了解了JVM内存区域与垃圾回收算法,今天将为各位带来关于垃圾收集器的知识.关注我的公众号「Java面典」了解更多 Java 相关知识点. Java 堆内存被划分为新生代和老年代两部分,因此 JVM 通 ...