【说在前面】本人博客新手一枚,象牙塔的老白,职业场的小白。以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手]

【再啰嗦一下】如果你对智能推荐感兴趣,欢迎先浏览我的另一篇随笔:智能推荐算法演变及学习笔记

【最后再说一下】本文只对智能推荐算法中的CTR预估模型演变进行具体介绍!

一、传统CTR预估模型演变

1. LR

即逻辑回归。LR模型先求得各特征的加权和,再添加sigmoid函数。

  • 使用各特征的加权和,是为了考虑不同特征的重要程度
  • 使用sigmoid函数,是为了将值映射到 [0, 1] 区间

LR模型的优点在于:

  • 易于并行化、模型简单、训练开销小
  • 可解释性强、可拓展性强

LR模型的缺点在于:

  • 只使用单一特征,无法利用高维信息,表达能力有限
  • 特征工程需要耗费大量的精力

2. POLY2

POLY2对所有特征进行“暴力”组合(即两两交叉),并对所有的特征组合赋予了权重。

一定程度上解决了LR缺乏特征组合的问题,但是“暴力行为”带来了一些问题:

  • 特征维度爆炸,特征数据过于稀疏,特征权重不易收敛

3. FM

相比于POLY2,FM为每个特征学习了一个隐权重向量 w。在特征交叉时,使用两个特征隐向量w的内积作为交叉特征的权重。

将原先n^2级别的权重数量降低到n*k(k为隐向量w的维度,n>>k),极大降低了训练开销。

4. FFM

在FM模型基础上,FFM模型引入了Field-aware。在特征交叉时,使用特征在对方特征域上的隐向量内积作为交叉特征的权重。

FFM模型的权重数量共n*k*f个,计算复杂度上升到k*n^2,远远大于FM模型的k*n。

5. GBDT/xgboost/lightgbm

直接使用机器学习算法中的集成学习方法。

6. GBDT+LR/FM/FFM

利用GBDT自动进行特征筛选和组合,进而生成新的离散特征向量,再把该特征向量当作LR模型的输入。

7. MLR

在LR的基础上采用分而治之的思路,先对样本进行分片,再在样本分片中应用LR进行CTR预估。

以上1-7部分可以总结为传统的CTR预估模型演变,这里分享一下大佬的关系图谱:

二、引入深度学习的CTR预估模型演变

1. Deep Crossing

通过加入embedding层将稀疏特征转化为低维稠密特征,用stacking层连接分段的特征向量,再通过多层神经网络完成特征组合/转换。

跟经典DNN有所不同的是,Deep crossing采用的multilayer perceptron是由残差网络组成的。

2. FNN

相比于Deep Crossing,FNN使用FM的隐层向量作为user和item的Embedding,从而避免了完全从随机状态训练Embedding。

3. Wide & Deep

把单输入层的Wide部分和经过多层感知机的Deep部分连接起来,一起输入最终的输出层。

  • wide部分:高维特征+特征组合的LR
  • deep部分:deep learning

4. DeepFM

DeepFM对Wide & Deep的改进之处在于,用FM替换掉了原来的Wide部分,加强了浅层网络部分特征组合的能力。

5. Deep & Cross (DCN)

使用Cross网络替代了原来的Wide部分。Cross网络使用多层cross layer对输入向量进行特征交叉,增加特征之间的交互。

6. NFM

相对于DeepFM和DCN对于Wide&Deep Wide部分的改进,NFM可以看作是对Deep部分的改进。

NFM用一个带Bi-interaction Pooling层的DNN替换了FM的特征交叉部分。

7. Deep Interest Network (DIN)

在模型的embedding layer和concatenate layer之间加入了attention unit,使模型能够根据候选商品的不同,调整不同特征的权重。

以上1-7部分可以总结为引入深度学习的CTR预估模型演变,这里分享一下大佬的关系图谱:

三、深度学习推荐模型的上线问题

对于深度学习推荐模型的离线训练自然不是问题,一般可以采用比较成熟的离线并行训练环境。

对于深度学习推荐模型的上线问题,其线上时效性至关重要。

1. “特征实时性”

这里分享一下大佬画的智能推荐系统主流技术架构图,博主认知有限,就不展开介绍了。

2. “模型实时性”

与“特征实时性”相比,推荐系统模型的实时性往往是从更全局的角度考虑问题,博主认知有限,就不展开介绍了。

3. “服务实时性”:双塔模型

很多公司采用“复杂网络离线训练,生成embedding存入内存数据库,线上实现LR或浅层NN等轻量级模型拟合优化目标”的上线方式。

以百度的双塔模型举例说明:

(1)分别用复杂网络对“用户特征”和“广告特征”进行embedding,这就形成了两个独立的“塔”,因此称为双塔模型。

(2)在完成双塔模型的训练后,可以把最终的用户embedding和广告embedding存入内存数据库。

(3)线上推理时,只需要实现最后一层的逻辑,从内存数据库中取出用户/广告的embedding,通过简单计算即可得到预估结果。

最后感叹一句,深度学习CTR模型的发展实在是太迅速了,要保持学习啊!

本文参考了大佬的知乎专栏:https://zhuanlan.zhihu.com/p/51117616

如果你对智能推荐感兴趣,欢迎先浏览我的另一篇随笔:智能推荐算法演变及学习笔记

如果您对数据挖掘感兴趣,欢迎浏览我的另一篇博客:数据挖掘比赛/项目全流程介绍

如果您对人工智能算法感兴趣,欢迎浏览我的另一篇博客:人工智能新手入门学习路线和学习资源合集(含AI综述/python/机器学习/深度学习/tensorflow)

如果你是计算机专业的应届毕业生,欢迎浏览我的另外一篇博客:如果你是一个计算机领域的应届生,你如何准备求职面试?

如果你是计算机专业的本科生,欢迎浏览我的另外一篇博客:如果你是一个计算机领域的本科生,你可以选择学习什么?

如果你是计算机专业的研究生,欢迎浏览我的另外一篇博客:如果你是一个计算机领域的研究生,你可以选择学习什么?

如果你对金融科技感兴趣,欢迎浏览我的另一篇博客:如果你想了解金融科技,不妨先了解金融科技有哪些可能?

之后博主将持续分享各大算法的学习思路和学习笔记:hello world: 我的博客写作思路

CTR预估模型演变及学习笔记的更多相关文章

  1. 人工智能中小样本问题相关的系列模型演变及学习笔记(二):生成对抗网络 GAN

    [说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]本文衔接上一个随笔:人工智能中小样本问题相关的系列模型演变及学习 ...

  2. 深度学习中的序列模型演变及学习笔记(含RNN/LSTM/GRU/Seq2Seq/Attention机制)

    [说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻 ...

  3. 主流CTR预估模型的演化及对比

    https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏. ...

  4. 闲聊DNN CTR预估模型

    原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张 ...

  5. 深度CTR预估模型中的特征自动组合机制演化简史 zz

    众所周知,深度学习在计算机视觉.语音识别.自然语言处理等领域最先取得突破并成为主流方法.但是,深度学习为什么是在这些领域而不是其他领域最先成功呢?我想一个原因就是图像.语音.文本数据在空间和时间上具有 ...

  6. 【转】- 从FM推演各深度CTR预估模型(附代码)

    从FM推演各深度CTR预估模型(附代码) 2018年07月13日 15:04:34 阅读数:584 作者: 龙心尘 && 寒小阳 时间:2018年7月 出处: 龙心尘 寒小阳

  7. PaddlePaddle分布式训练及CTR预估模型应用

    前言:我在github上创建了一个新的repo:PaddleAI, 准备用Paddle做的一系列有趣又实用的案例,所有的案例都会上传数据代码和预训练模型,下载后可以在30s内上手,跑demo出结果,让 ...

  8. 基于.net的分布式系统限流组件 C# DataGridView绑定List对象时,利用BindingList来实现增删查改 .net中ThreadPool与Task的认识总结 C# 排序技术研究与对比 基于.net的通用内存缓存模型组件 Scala学习笔记:重要语法特性

    基于.net的分布式系统限流组件   在互联网应用中,流量洪峰是常有的事情.在应对流量洪峰时,通用的处理模式一般有排队.限流,这样可以非常直接有效的保护系统,防止系统被打爆.另外,通过限流技术手段,可 ...

  9. 几句话总结一个算法之CTR预估模型

    背景 假设现在有个商品点击预测的任务,有用户端特征性别.年龄.消费力等,商品侧特征价格.销量等,样本为0或者1,现在对特征进行one hot encode,如性别特征用二维表示,男为[1,0],女为[ ...

随机推荐

  1. 如何将一个div水平垂直居中?6种方法做推荐

    方案一: div绝对定位水平垂直居中[margin:auto实现绝对定位元素的居中], 兼容性:,IE7及之前版本不支持 div{ width: 200px; height: 200px; backg ...

  2. 定位new表达式与显式调用析构函数

    C++的核心理念之一是RAII,Resource Acquisition Is Initialization,资源获取即初始化.资源有很多种,内存.互斥锁.文件.套接字等:RAII可以用来实现一种与作 ...

  3. 用网线连接Windows和Linux台式机,并实现Linux共享Windows的WiFi网络

    前言 由于工作需要,需要利用网线将自己的笔记本和Linux台式机进行连接,实现Windows可以远程登录Linux机器,并实现Linux共享Windows的WiFi网络. 网上的很多方法可以实现两台机 ...

  4. 【LeetCode】 99. Recover Binary Search Tree [Hard] [Morris Traversal] [Tree]

    Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...

  5. 隐藏响应中的server和X-Powered-By

    来源:https://www.yduba.com/biancheng-7831560074.html 有时候,我们用调试工具查看别人的网站时,经常看到 X-Powered-By:PHP/7.1.8 这 ...

  6. ST3 package control

    view-> showconsole    (ctrl+`) import urllib.request,os,hashlib; h = 'df21e130d211cfc94d9b0905775 ...

  7. 构建密钥验证ssh

    1.需要两个虚拟机,每一个创建一个用户登录到用户根下   2.每个用户都要创建密钥对   3.把两个用户的公用密钥用ssh-copy-id -i 命令将公用的密钥复制到另一个用户中   4.在客户端开 ...

  8. 计算机网络 之 Cisco packet tracer 的安装及汉化

    可以去官网下载最新版本的Cisco packet tracer 免费 汉化包及7.1版本百度云链接:链接: https://pan.baidu.com/s/1XudelgnMu6XysCZ36csl7 ...

  9. Centos下安装Docker,并配置国内docker源

    Centos下安装Docker 替换为国内的yum源(可选): mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.re ...

  10. Android Resourse

    为什么80%的码农都做不了架构师?>>>   使用情景: 实现帧动画步骤的控制,这样动态的获取Drawable资源对应的R id,播放到那一步就加载到哪一步 private void ...