雅可比行列式【2】Jacobian行列式的意义
2.1 线性变换将面积伸缩
对于一个\(\R^2\to\R^2\)的线性变换:
\[
T(x,y)=
\left[
\begin{array}{c}
4x-2y\\
2x+3y
\end{array}
\right]
\]
设区域\(S_1=\{(x,y)|0\leq x,y\leq1\}\),若想要求\(\iint_{S_1}T(x,y)\ d\sigma\).可以通过基底表示单位正方形:\(e_1=(1,0)',e_2=(0,1)'\),则:
\[
S_1=\{xe_1+ye_2|0\leq x,y\leq1\}
\]
设\(A\)为线性变换\(T\)参考标准基地的表示矩阵,即有:
\[
T(xe_1+ye_2)=A(xe_1+ye_2)=xAe_1+yAe_2=xa_1+ya_2
\]
于是:
\[
T(S_1)=\{xa_1+ya_2|0\leq x,y\leq1\}
\]
这表明\(T(S_1)\)是以\(A=(a_1,a_2)\)表示的平行四边形,二阶行列式的绝对值为平行四边形的面积,因此\(v(T(S_1))=|detA|\)。这个结果表明平行四边形\(S_1\)经过线性变换\(T\),面积伸缩了\(|detA|\)倍。
2.2 Jacobian行列式的意义
if \(F:\R^n\to\R^n\) is derivable, then the Jacobian matrix is in \(n\times n\) form in which we could express a number of it. We set the n is equal to 2, and vector function is: \(F:u\to x\)
\[
det\ J(u,v)=
\left|
\begin{matrix}
\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\
\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}\\
\end{matrix}
\right|=\frac{\partial x}{\partial u}\frac{\partial y}{\partial v}-\frac{\partial x}{\partial v}\frac{\partial y}{\partial v}
\]
若令\(R=\{r_1,r_2\}\),其中\(r_1=(du,0)',r_2=(0,dv)'\)表示长方形,则\(F(R)=\{F(u)|u\in R\}\)近似如下面向量所表示的平行四边形:
\[
J(u,v)(du,0)'=
\left|
\begin{matrix}
\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\
\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}\\
\end{matrix}
\right|(du,0)'=
\left|
\begin{matrix}
\frac{\partial x}{\partial u}du\\
\frac{\partial y}{\partial u}du
\end{matrix}
\right|\\
J(u,v)(0,dv)'=\left|\begin{matrix}\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}\\\end{matrix}\right|(0,dv)'=\left|\begin{matrix}\frac{\partial x}{\partial v}dv\\\frac{\partial y}{\partial v}dv\end{matrix}\right|
\]
若令\(dA\)表示平行四边形\(F(R)\)的面积, 因为二阶行列式的行向量所形成的平行四边形面积等于行列式的绝对值,则:
\[
dA=\left|
det
\left[
\begin{matrix}
\frac{\partial x}{\partial u}du&\frac{\partial x}{\partial v}dv\\
\frac{\partial y}{\partial u}du&\frac{\partial y}{\partial v}dv\\
\end{matrix}
\right]
\right|=
\left|
det
\left[
\begin{matrix}
\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\
\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}\\
\end{matrix}
\right]
\right|dudv=|det\ J(u,v)|dudv
\]
所以微笑区域\(R\)经过向量函数\(F:R\to F(R)\),其面积伸缩了\(|det\ J(u,v)|\)倍。对于\(f:\R^2\to\R\)我们可以得出变换积分公式:
\[
\int_{F(R)} f(x,y)dxdy=\int_{R} f(x(u,v),y(u,v))\left|J(u,v)\right|dudv\\
|J(u,v)|=\left|\frac{\partial(x,y)}{\partial(u,v)}
\right|
\]
雅可比行列式【2】Jacobian行列式的意义的更多相关文章
- Jacobian矩阵和Hessian矩阵
1.Jacobian矩阵 在矩阵论中,Jacobian矩阵是一阶偏导矩阵,其行列式称为Jacobian行列式.假设 函数 $f:R^n \to R^m$, 输入是向量 $x \in R^n$ ,输出为 ...
- 《Linear Algebra and Its Applications》-chaper3-行列式-行列式初等变换
承接上一篇文章对行列式的引入,这篇文章将进一步记录关于行列式的有关内容,包括如下的几个方面: (1)行列式3个初等变换的证明. (2)转置行列式与原行列式相等的证明. (3)定理det(AB) = d ...
- 【原创】开源Math.NET基础数学类库使用(15)C#计算矩阵行列式
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 上个月 ...
- 开源Math.NET基础数学类库使用(15)C#计算矩阵行列式
原文:[原创]开源Math.NET基础数学类库使用(15)C#计算矩阵行列式 本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p ...
- 矩阵&行列式
# 代数 排列 对换,对于一个排列操作,对于一个偶排列一次对换之后变为奇排列 反之变为偶排列 行列式 N阶行列式室友N^2个数aij(i,j = 1,2,3,...n) 行列式的数=\(\sum_ { ...
- Eigen求矩阵行列式 及 行列式本质
转置.伴随.行列式.逆矩阵 小矩阵(4 * 4及以下)eigen会自动优化,默认采用LU分解,效率不高 #include <iostream> #include <Eigen/Den ...
- C++中计算矩阵的行列式
使用eigen库: 求行列式: #include <iostream> #include <Eigen/Dense> using namespace std; using na ...
- 方阵行列式并行化计算(OpenMP,MPI),并计算加速比
00][100].在创建方阵时,方阵的阶数N(N<100)由外部输入.然后用两层"for循环"来给方阵 p左上角 N×N个位置赋值.具体实现如下: /* * 定义矩阵阶数N ...
- 洛谷P7112 行列式求值
行列式求值 这是一个让你掉头发的模板题 行列式的定义 行列式 (\(\texttt{Determinant}\)) 是一个函数定义,取值是一个标量. 对一个 \(n\times n\) 的矩阵 \(A ...
随机推荐
- WordPress 更新中断故障
WordPress 更新中断故障 WordPress更新中断后显示:Briefly unavailable for scheduled maintenance. Check back in a min ...
- 中兴获25个5G商用合同
网易科技讯,6 月 25 日消息,在 2019 年 MWC 上海展期间,中兴通讯宣布随着全球首批 5G 规模商用部署展开,已在全球获得 25 个 5G 商用合同,覆盖中国.欧洲.亚太.中东等主要 5G ...
- 四十二、在SAP中添加单选框
一.上代码 二.上文本替换截图 三.上效果图
- 十一、SAP文本变量,并设置长度
一.在SAP中,一个中文占用2个文本长度,详见代码: 二.效果如下
- POJ 1177/HDU 1828 picture 线段树+离散化+扫描线 轮廓周长计算
求n个图矩形放下来,有的重合有些重合一部分有些没重合,求最后总的不规则图型的轮廓长度. 我的做法是对x进行一遍扫描线,再对y做一遍同样的扫描线,相加即可.因为最后的轮廓必定是由不重合的线段长度组成的, ...
- JAVA基本数据类型和注释
一.注释 1.注释的概念 注释是程序中给人看的提示信息,会被编译器忽略:在程序编译和执行过程中不会有任何影响,仅仅在代码阅读时提供提示信息. 2.注释的形式 基本语法://注释的内容 a.行注释 ...
- ES query does not support [auto_generate_synonyms_phrase_query]
测试环境使用 elasticsearch-rest-high-level-client 做为基础包发起es调用出现如下异常: {"error":{"root_caus ...
- vue左侧菜单的实现
后端实现 django视图def menu(request): menu_list = models.Menu.objects.all().values('id', 'menu_name', 'par ...
- javascript中的私有作用域
我们知道js中所有的块级作用域都是无效的,块级作用域内的变量,在外部仍然可以被读取,其实是申明在外部的.如何实现变量的私有化,只在块级作用域起效,避免污染全局的变量呢.而且,挂载在全局的变量很难被回收 ...
- V-Distpicker不能完整显示内容
V-Distpicker插件在列表中,或者在dialog中只显示了第一次的内容,第二次就开始报错.这个和前篇中的地图问题其实如出一辙. 解决办法,重加载,局部刷新. <el-form-item ...