hbase 基本的JavaApi 数据操作及数据过滤(filter)
本文主要是hbase的表操作、数据操作、数据查询过滤等,如果对JDBC或ADO有了解,容易理解HBASE API。
hbase版本是2.0。
1、为了方便先贴helper的部分代码(文末git上有完整的测试代码),主要是为了复用Connection。
public class HBaseHelper implements Closeable {
    private Configuration configuration = null;
    private Connection connection = null;
    private Admin admin = null;
    private HBaseHelper(Configuration configuration) throws IOException {
        this.configuration = configuration;
        this.connection = ConnectionFactory.createConnection(this.configuration);
        admin = this.connection.getAdmin();
    }
    public static HBaseHelper getHBaseHelper(Configuration configuration) throws IOException {
        return new HBaseHelper(configuration);
    }
    @Override
    public void close() throws IOException {
        admin.close();
        connection.close();
    }
    public Connection getConnection() {
        return connection;
    }
    public Configuration getConfiguration() {
        return configuration;
    }
 ... ...
}
初始化,用来初始化hbase配置,连接hbase,获取本文中的hbase辅助操作类HbaseHelper。
//初始化
private void setUp() throws IOException{
conf = HBaseConfiguration.create();
conf.set("hbase.master","192.168.31.10");
//The port the HBase Master should bind to.
// conf.set("hbase.master.port","16000"); //The port for the HBase Master web UI. Set to -1 if you do not want a UI instance run.
// conf.set("hbase.master.info.port","16010"); //The port the HBase RegionServer binds to.
// conf.set("hbase.regionserver.port","16020"); //The port for the HBase RegionServer web UI Set to -1 if you do not want the RegionServer UI to run.
// conf.set("hbase.regionserver.info.port","16030"); conf.set("hbase.zookeeper.quorum","192.168.31.10"); //Property from ZooKeeper’s config zoo.cfg. The port at which the clients will connect.
// HBase数据库使用的端口
//conf.set("hbase.zookeeper.property.clientPort", "2181"); //单机
conf.set("hbase.rootdir","file:///opt/hbase_data");
conf.set("hbase.zookeeper.property.dataDir","/opt/hbase_data/zookeeper"); helper = HBaseHelper.getHBaseHelper(conf);
}
2、命名空间、表创建、删除、exist等
public void createNamespace(String namespace) {
        try {
            NamespaceDescriptor nd = NamespaceDescriptor.create(namespace).build();
            admin.createNamespace(nd);
        } catch (Exception e) {
            System.err.println("Error: " + e.getMessage());
        }
    }
    public void dropNamespace(String namespace, boolean force) {
        try {
            if (force) {
                TableName[] tableNames = admin.listTableNamesByNamespace(namespace);
                for (TableName name : tableNames) {
                    admin.disableTable(name);
                    admin.deleteTable(name);
                }
            }
        } catch (Exception e) {
            // ignore
        }
        try {
            admin.deleteNamespace(namespace);
        } catch (IOException e) {
            System.err.println("Error: " + e.getMessage());
        }
    }
    public boolean existsTable(String table)
            throws IOException {
        return existsTable(TableName.valueOf(table));
    }
    public boolean existsTable(TableName table)
            throws IOException {
        return admin.tableExists(table);
    }
    public void createTable(String table, String... colfams)
            throws IOException {
        createTable(TableName.valueOf(table), 1, null, colfams);
    }
    public void createTable(TableName table, String... colfams)
            throws IOException {
        createTable(table, 1, null, colfams);
    }
    public void createTable(String table, int maxVersions, String... colfams)
            throws IOException {
        createTable(TableName.valueOf(table), maxVersions, null, colfams);
    }
    public void createTable(TableName table, int maxVersions, String... colfams)
            throws IOException {
        createTable(table, maxVersions, null, colfams);
    }
    public void createTable(String table, byte[][] splitKeys, String... colfams)
            throws IOException {
        createTable(TableName.valueOf(table), 1, splitKeys, colfams);
    }
    public void createTable(TableName table, int maxVersions, byte[][] splitKeys,
                            String... colfams)
            throws IOException {
        //表描述器构造器
        TableDescriptorBuilder tableDescriptorBuilder = TableDescriptorBuilder.newBuilder(table);
        //列族描述构造器
        ColumnFamilyDescriptorBuilder cfDescBuilder;
        //列族描述器
        ColumnFamilyDescriptor cfDesc;
        for (String cf : colfams) {
            cfDescBuilder = ColumnFamilyDescriptorBuilder.newBuilder(Bytes.toBytes(cf));
            cfDescBuilder.setMaxVersions(maxVersions);
            cfDesc = cfDescBuilder.build();
            tableDescriptorBuilder.setColumnFamily(cfDesc);
        }
        //获得表描述器
        TableDescriptor tableDescriptor = tableDescriptorBuilder.build();
        if (splitKeys != null) {
            admin.createTable(tableDescriptor, splitKeys);
        } else {
            admin.createTable(tableDescriptor);
        }
    }
   //禁用表
    public void disableTable(String table) throws IOException {
        disableTable(TableName.valueOf(table));
    }
    public void disableTable(TableName table) throws IOException {
        admin.disableTable(table);
    }
    public void dropTable(String table) throws IOException {
        dropTable(TableName.valueOf(table));
    }
    //删除前,先禁用表
    public void dropTable(TableName table) throws IOException {
        if (existsTable(table)) {
            if (admin.isTableEnabled(table)) disableTable(table);
            admin.deleteTable(table);
        }
    }
样例:
//插入testtable表数据
private void initTestTable() throws IOException{
String tableNameString = "testtable";
if(helper.existsTable(tableNameString)){
helper.disableTable(tableNameString);
helper.dropTable(tableNameString);
} helper.createTable(tableNameString,"info","ex","memo");
helper.put(tableNameString,"row1","info","username","admin");
helper.put(tableNameString,"row1","ex","addr","北京大道");
helper.put(tableNameString,"row1","memo","detail","超级用户,地址:北京大道"); helper.put(tableNameString,"row2","info","username","guest");
helper.put(tableNameString,"row2","ex","addr","全国各地");
helper.put(tableNameString,"row2","memo","detail","游客,地址:全国到处都是"); helper.close();
}
2、插入(或是更新)数据
public void put(String table, String row, String fam, String qual,
String val) throws IOException {
put(TableName.valueOf(table), row, fam, qual, val);
} //插入或更新单行
public void put(TableName table, String row, String fam, String qual,
String val) throws IOException {
Table tbl = connection.getTable(table);
Put put = new Put(Bytes.toBytes(row));
put.addColumn(Bytes.toBytes(fam), Bytes.toBytes(qual), Bytes.toBytes(val));
tbl.put(put);
tbl.close();
} public void put(String table, String row, String fam, String qual, long ts,
String val) throws IOException {
put(TableName.valueOf(table), row, fam, qual, ts, val);
} //带时间戳插入或更新单行
public void put(TableName table, String row, String fam, String qual, long ts,
String val) throws IOException {
Table tbl = connection.getTable(table);
Put put = new Put(Bytes.toBytes(row));
put.addColumn(Bytes.toBytes(fam), Bytes.toBytes(qual), ts,
Bytes.toBytes(val));
tbl.put(put);
tbl.close();
} //插入或者更新一个rowKey数据,一个Put里有一个rowKey,可能有多个列族和列名
public void put(String tableNameString, Put put) throws IOException {
TableName tableName = TableName.valueOf(tableNameString);
Table table = connection.getTable(tableName);
if (put != null && put.size() > 0) {
table.put(put);
}
table.close();
}
2.1、批量插入,根据实际的业务来组装数据,最终就是利用API放入put列表
//批量插入数据,list里每个map就是一条数据,并且按照rowKey columnFamily columnName columnValue放入map的key和value
public void bulkInsert(String tableNameString, List<Map<String, Object>> list) throws IOException {
Table table = connection.getTable(TableName.valueOf(tableNameString));
List<Put> puts = new ArrayList<Put>();
if (list != null && list.size() > 0) {
for (Map<String, Object> map : list) {
Put put = new Put(Bytes.toBytes(map.get("rowKey").toString()));
put.addColumn(Bytes.toBytes(map.get("columnFamily").toString()),
Bytes.toBytes(map.get("columnName").toString()),
Bytes.toBytes(map.get("columnValue").toString()));
puts.add(put);
}
}
table.put(puts);
table.close();
} //批量插入,外部组装put放入list
public void bulkInsert2(String tableNameString, List<Put> puts) throws IOException {
Table table = connection.getTable(TableName.valueOf(tableNameString));
if (puts != null && puts.size() > 0) {
table.put(puts);
}
table.close();
}
样例:
//批量插入
private void bulkInsertTestTable() throws IOException{
String tableNameString = "testtable";
if(!helper.existsTable(tableNameString)){
helper.createTable(tableNameString,"info","ex","memo");
} System.out.println(".........批量插入数据start.........");
List<Map<String,Object>> mapList = new ArrayList<>();
for(int i=1;i<201;i++){
Map<String,Object> map = new HashMap<>();
map.put("rowKey","testKey"+i);
map.put("columnFamily","info");
map.put("columnName","username");
map.put("columnValue","guest"+i); map.put("rowKey","testKey"+i);
map.put("columnFamily","ex");
map.put("columnName","addr");
map.put("columnValue","北京路"+i+"号"); map.put("rowKey","testKey"+i);
map.put("columnFamily","memo");
map.put("columnName","detail");
map.put("columnValue","联合国地球村北京路第"+i+"号"); mapList.add(map);
} helper.bulkInsert(tableNameString,mapList); System.out.println(".........批量插入数据end.........");
} //批量插入2
private void insertByRowKey(String table,String rowKey) throws IOException{
Put put = new Put(Bytes.toBytes(rowKey)); String columnFamily ;
String columnName ;
String columnValue ;
for(int i=0;i<10;i++){
columnFamily = "info";
columnName = "username"+i;
columnValue = "user111";
put.addColumn(Bytes.toBytes(columnFamily),Bytes.toBytes(columnName),Bytes.toBytes(columnValue)); columnFamily = "ex";
columnName = "addr"+i;
columnValue = "street 111";
put.addColumn(Bytes.toBytes(columnFamily),Bytes.toBytes(columnName),Bytes.toBytes(columnValue)); columnFamily = "memo";
columnName = "detail"+i;
columnValue = "sssss zzz 111222 ";
put.addColumn(Bytes.toBytes(columnFamily),Bytes.toBytes(columnName),Bytes.toBytes(columnValue));
}
System.out.println("----> put size:"+put.size()); helper.put(table,put); } private void bulkInsertTestTable2(String tableNameString) throws IOException{
// String tableNameString = "testtable";
if(!helper.existsTable(tableNameString)){
helper.createTable(tableNameString,"info","ex","memo");
} List<Put> puts = new ArrayList<>();
for(int i=0;i<10;i++){
String rowKey = "rowKey"+i;
Put put = new Put(Bytes.toBytes(rowKey)); String columnFamily = "info";
String columnName = "username2";
String columnValue = "user"+i;
put.addColumn(Bytes.toBytes(columnFamily),Bytes.toBytes(columnName),Bytes.toBytes(columnValue)); columnFamily = "ex";
columnName = "addr2";
columnValue = "street "+i;
put.addColumn(Bytes.toBytes(columnFamily),Bytes.toBytes(columnName),Bytes.toBytes(columnValue)); columnFamily = "memo";
columnName = "detail2";
columnValue = "aazzdd "+i;
put.addColumn(Bytes.toBytes(columnFamily),Bytes.toBytes(columnName),Bytes.toBytes(columnValue)); System.out.println("put size:"+put.size());
puts.add(put);
}
helper.bulkInsert2(tableNameString,puts);
}
3、删除数据,由于hbase数据是三个维度的,所以删除数据有多种操作
//根据rowKey删除所有行数据
public void deleteByKey(String tableNameString,String rowKey) throws IOException{
Table table = connection.getTable(TableName.valueOf(tableNameString));
Delete delete = new Delete(Bytes.toBytes(rowKey)); table.delete(delete);
table.close();
} //根据rowKey和列族删除所有行数据
public void deleteByKeyAndFamily(String tableNameString,String rowKey,String columnFamily) throws IOException{
Table table = connection.getTable(TableName.valueOf(tableNameString));
Delete delete = new Delete(Bytes.toBytes(rowKey));
delete.addFamily(Bytes.toBytes(columnFamily)); table.delete(delete);
table.close();
} //根据rowKey、列族删除多个列的数据
public void deleteByKeyAndFC(String tableNameString,String rowKey,
String columnFamily,List<String> columnNames) throws IOException{
Table table = connection.getTable(TableName.valueOf(tableNameString));
Delete delete = new Delete(Bytes.toBytes(rowKey));
for(String columnName:columnNames){
delete.addColumns(Bytes.toBytes(columnFamily),Bytes.toBytes(columnName));
}
table.delete(delete);
table.close();
}
4、基本的查询,唯一要注意的是cell里的value必须按位移和长度来取
//根据rowkey,获取所有列族和列数据
public List<Cell> getRowByKey(String tableNameString,String rowKey) throws IOException{
Table table = connection.getTable(TableName.valueOf(tableNameString)); Get get = new Get(Bytes.toBytes(rowKey));
Result result = table.get(get);
// Cell[] cells = result.rawCells();
List<Cell> list = result.listCells();
table.close();
return list;
}
//从Cell取Array要加上位移和长度,不然数据不正确
public void dumpResult(Result result) {
for (Cell cell : result.rawCells()) {
System.out.println("Cell: " + cell +
", Value: " + Bytes.toString(cell.getValueArray(),
cell.getValueOffset(), cell.getValueLength()));
}
}
5、过滤,这个是HBASE查询的重要部分
5.1、根据rowKey来过滤
//根据rowKey过滤数据,rowKey可以使用正则表达式
//返回rowKey和Cells的键值对
public Map<String,List<Cell>> filterByRowKeyRegex(String tableNameString,String rowKey,CompareOperator operator) throws IOException{
Table table = connection.getTable(TableName.valueOf(tableNameString));
Scan scan = new Scan();
//使用正则
RowFilter filter = new RowFilter(operator,new RegexStringComparator(rowKey)); //包含子串匹配,不区分大小写。
// RowFilter filter = new RowFilter(operator,new SubstringComparator(rowKey)); scan.setFilter(filter); ResultScanner scanner = table.getScanner(scan);
Map<String,List<Cell>> map = new HashMap<>();
for(Result result:scanner){
map.put(Bytes.toString(result.getRow()),result.listCells());
}
table.close();
return map;
}
5.2、根据列值、列值正则等方式过滤
//根据列族,列名,列值(支持正则)查找数据
//返回值:如果查询到值,会返回所有匹配的rowKey下的各列族、列名的所有数据(即使查询的时候这些列族和列名并不匹配)
public Map<String,List<Cell>> filterByValueRegex(String tableNameString,String family,String colName,
String value,CompareOperator operator) throws IOException{
Table table = connection.getTable(TableName.valueOf(tableNameString));
Scan scan = new Scan(); //正则匹配
SingleColumnValueFilter filter = new SingleColumnValueFilter(Bytes.toBytes(family),
Bytes.toBytes(colName),operator,new RegexStringComparator(value)); //完全匹配
// SingleColumnValueFilter filter = new SingleColumnValueFilter(Bytes.toBytes(family),
// Bytes.toBytes(colName),operator,Bytes.toBytes(value)); //SingleColumnValueExcludeFilter排除列值 //要过滤的列必须存在,如果不存在,那么这些列不存在的数据也会返回。如果不想让这些数据返回,设置setFilterIfMissing为true
filter.setFilterIfMissing(true);
scan.setFilter(filter); ResultScanner scanner = table.getScanner(scan);
Map<String,List<Cell>> map = new HashMap<>();
for(Result result:scanner){
map.put(Bytes.toString(result.getRow()),result.listCells());
}
return map;
}
5.3、根据列名前缀、列名正则、多个列名等过滤
//根据列名前缀过滤数据
public Map<String,List<Cell>> filterByColumnPrefix(String tableNameString,String prefix) throws IOException{
Table table = connection.getTable(TableName.valueOf(tableNameString)); //列名前缀匹配
ColumnPrefixFilter filter = new ColumnPrefixFilter(Bytes.toBytes(prefix)); //QualifierFilter 用于列名多样性匹配过滤
// QualifierFilter filter = new QualifierFilter(CompareOperator.EQUAL,new SubstringComparator(prefix)); //多个列名前缀匹配
// MultipleColumnPrefixFilter multiFilter = new MultipleColumnPrefixFilter(new byte[][]{}); Scan scan = new Scan();
scan.setFilter(filter); ResultScanner scanner = table.getScanner(scan);
Map<String,List<Cell>> map = new HashMap<>();
for(Result result:scanner){
map.put(Bytes.toString(result.getRow()),result.listCells());
}
return map;
}
5.4、过滤器集合,多个过滤器同时按通过策略来过滤
//根据列名范围以及列名前缀过滤数据
public Map<String,List<Cell>> filterByPrefixAndRange(String tableNameString,String colPrefix,
String minCol,String maxCol) throws IOException{
Table table = connection.getTable(TableName.valueOf(tableNameString)); //列名前缀匹配
ColumnPrefixFilter filter = new ColumnPrefixFilter(Bytes.toBytes(colPrefix)); //列名范围扫描,上下限范围包括
ColumnRangeFilter rangeFilter = new ColumnRangeFilter(Bytes.toBytes(minCol),true,
Bytes.toBytes(maxCol),true); FilterList filterList = new FilterList(FilterList.Operator.MUST_PASS_ALL);
filterList.addFilter(filter);
filterList.addFilter(rangeFilter); Scan scan = new Scan();
scan.setFilter(filterList); ResultScanner scanner = table.getScanner(scan);
Map<String,List<Cell>> map = new HashMap<>();
for(Result result:scanner){
map.put(Bytes.toString(result.getRow()),result.listCells());
}
return map;
}
6、过滤器介绍
6.1、比较操作,如等于、大于、小于
public enum CompareOperator {
  // Keeps same names as the enums over in filter's CompareOp intentionally.
  // The convertion of operator to protobuf representation is via a name comparison.
  /** less than */
  LESS,
  /** less than or equal to */
  LESS_OR_EQUAL,
  /** equals */
  EQUAL,
  /** not equal */
  NOT_EQUAL,
  /** greater than or equal to */
  GREATER_OR_EQUAL,
  /** greater than */
  GREATER,
  /** no operation */
  NO_OP,
}
6.2、比较器,主要是继承ByteArrayComparable的类

RegexStringComparator 支持正则表达式的值比较 Scan scan = new Scan();
RegexStringComparator comp = new RegexStringComparator("you."); // 以 you 开头的字符串
SingleColumnValueFilter filter = new SingleColumnValueFilter(Bytes.toBytes("family"), Bytes.toBytes("qualifier"), CompareOp.EQUAL, comp);
scan.setFilter(filter);
SubStringComparator 用于判断一个子串是否存在于值中,并且不区分大小写。 Scan scan = new Scan();
SubstringComparator comp = new SubstringComparator("substr"); // 查找包含的字符串
SingleColumnValueFilter filter = new SingleColumnValueFilter(Bytes.toBytes("family"), Bytes.toBytes("qualifier"), CompareOp.EQUAL, comp);
scan.setFilter(filter);
BinaryComparator 二进制比较器,不用反序列化直接进行字节比较,比较高效。 Scan scan = new Scan();
BinaryComparator comp = new BinaryComparator(Bytes.toBytes("my hbase"));
ValueFilter filter = new ValueFilter(CompareOp.EQUAL, comp);
scan.setFilter(filter);
BinaryPrefixComparator 前缀二进制比较器。只比较前缀是否相同。 Scan scan = new Scan();
BinaryPrefixComparator comp = new BinaryPrefixComparator(Bytes.toBytes("test")); //
SingleColumnValueFilter filter = new SingleColumnValueFilter(Bytes.toBytes("family"), Bytes.toBytes("qualifier"), CompareOp.EQUAL, comp);
scan.setFilter(filter);
注意:BitComparator、RegexStringComparator、SubStringComparator只能与EQUAL和NOT_EQUAL搭配使用,因为这些比较器的compareTo()方法匹配时返回0,不匹配的时候返回1,如果和LESS或GREATER搭配就会出错。
基于字符串的比较器比基于字节的比较器更慢,也更消耗资源。
6.3、过滤器,部分介绍
行键过滤器
RowFilter 对某一行的过滤。 Scan scan = new Scan();
RowFilter filter = new RowFilter(CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("row1")));
scan.setFilter(filter);
列族过滤器
FamilyFilter 用于过滤列族(也可以在Scan 过程中通过设定某些列族来实现该功能) Scan scan = new Scan();
FamilyFilter filter = new FamilyFilter(CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("info"))); // 列族为 info
scan.setFilter(filter);
列名过滤器
QualifierFilter 列名全匹配 Scan scan = new Scan();
QualifierFilter filter = new QualifierFilter(CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("username"))); // 列名为 username
scan.setFilter(filter); ColumnPrefixFilter 用于列名(Qualifier)前缀过滤,即包含某个前缀的所有列名。 Scan scan = new Scan();
ColumnPrefixFilter filter = new ColumnPrefixFilter(Bytes.toBytes("addr")); // 前缀为 addr
scan.setFilter(filter); MultipleColumnPrefixFilter
MultipleColumnPrefixFilter 与 ColumnPrefixFilter 的行为类似,但可以指定多个列名(Qualifier)前缀。 Scan scan = new Scan();
byte[][] prefixes = new byte[][]{Bytes.toBytes("my-prefix-1"), Bytes.toBytes("my-prefix-2")};
MultipleColumnPrefixFilter filter = new MultipleColumnPrefixFilter(prefixes); 、
scan.setFilter(filter); ColumnRangeFilter 列名范围过滤器可以进行高效的列名内部扫描。关键字:已排序 Scan scan = new Scan();
ColumnRangeFilter filter = new ColumnRangeFilter(Bytes.toBytes("minColumn"), true, Bytes.toBytes("maxColumn"), false);
scan.setFilter(filter); DependentColumnFilter 尝试找到该列所在的每一行,并返回该行具有相同时间戳的全部键值对。 Scan scan = new Scan();
DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("family"), Bytes.toBytes("qualifier"));
scan.setFilter(filter);
列值过滤器
SingleColumnValueFilter 列值比较 列族 info 下的列 username的列值和字符串 "admin" 相等的数据 :
Scan scan = new Scan();
SingleColumnValueFilter filter = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("username"), CompareOp.EQUAL, Bytes.toBytes("admin"));
scan.setFilter(filter);
6.4、代码:
https://github.com/asker124143222/hbaseHello
https://github.com/asker124143222/hbaseDemo
hbase 基本的JavaApi 数据操作及数据过滤(filter)的更多相关文章
- for循环中进行联网请求数据、for循环中进行异步数据操作,数据排序错乱问题解决;
		for循环中进行联网请求数据,由于网络请求是异步的,第一个网络请求还没有回调,第二次第三次以及后续的网络请求又已经发出去了,有可能后续的网络请求会先回调:这时我们接收到的数据的排序就会错乱:怎么才能让 ... 
- MySQL的数据库,数据表,数据的操作
		数据库简介 概念 什么是数据库?简单来说,数据库就是存储数据的"仓库", 但是,光有数据还不行,还要管理数据的工具,我们称之为数据库管理系统! 数据库系统 = 数据库管理系统 + ... 
- coreData数据操作
		// 1. 建立模型文件// 2. 建立CoreDataStack// 3. 设置AppDelegate 接着 // // CoreDataStack.swift // CoreDataStackDe ... 
- SQL语言-----数据操作
		数据操作 增加数据,insert into 标准格式 insert into 表名 (字段的列表)value(数据列表): 使用set insert into 表名 set 字段1=值,2.....: ... 
- MySQL表操作及数据操作
		表操作 表相当于一个文件,其形式与现实中的表格相同.表中的每条记录都有相应的字段,字段就类似于表格的表头. 表操作详细: #对表进行操作(文件) #首先要切换到指定库(即文件夹)下:use db1; ... 
- JAVA IO操作:数据操作流:DataOutputStream和DataInputStream
		掌握DataOutputStream和DataInputStream的作用. 可以使用DataOutputStream和DataInputStream写入和读取数据. 在IO包中提供了两个与平台无关的 ... 
- 笔记-mongodb数据操作
		笔记-mongodb数据操作 1. 数据操作 1.1. 插入 db.COLLECTION_NAME.insert(document) 案例: db.inventory.insertOn ... 
- 使用Hive或Impala执行SQL语句,对存储在HBase中的数据操作
		CSSDesk body { background-color: #2574b0; } /*! zybuluo */ article,aside,details,figcaption,figure,f ... 
- HBase伪分布式安装(HDFS)+ZooKeeper安装+HBase数据操作+HBase架构体系
		HBase1.2.2伪分布式安装(HDFS)+ZooKeeper-3.4.8安装配置+HBase表和数据操作+HBase的架构体系+单例安装,记录了在Ubuntu下对HBase1.2.2的实践操作,H ... 
随机推荐
- Python socket网络模块
			一.基于TCP协议的socket通信 以打电话为理解方式进行TCP的通信. Server端代码: import socket phone = socket.socket(socket.AF_INET, ... 
- 【JUC源码解析】ConcurrentLinkedQueue
			简介 ConcurrentLinkedQueue是一个基于链表结点的无界线程安全队列. 概述 队列顺序,为FIFO(first-in-first-out):队首元素,是当前排队时间最长的:队尾元素,当 ... 
- 原生与JS交互 iOS
			前言 Hybrid App(混合模式移动应用)是指介于web-app.native-app这两者之间的app,兼具“Native App良好用户交互体验的优势”和“Web App跨平台开发的优势” ... 
- Fiddler 调用java webserivces
			这是java写的webservice,并发布成功. 使用Fidder Get调用和POST调用 get比较简单: http://192.168.3.176:8080/AppTestService/se ... 
- 深入解析QML引擎, 第2部分: 绑定(Bindings)
			原文 QML Engine Internals, Part 2: Bindings 译者注:这个解析QML引擎的文章共4篇,分析非常透彻,在国内几乎没有找到类似的分析,为了便于国内的QT/QML爱好 ... 
- Linux学习(一)------CentOs安装mysql5.5 数据库
			具体方法和步骤如下所示: 1.第一步就是看linu是否安装了mysql,经过rpm -qa|grep mysql查看到centos下安装了mysql5.1,那就开始卸载咯 2.接下来就是卸载mysql ... 
- Lua学习笔记(2): 流程控制与循环以及初涉迭代器
			条件判断语句 --if...语句 if (表达式) then --表达式为1时执行的语句 end --if...else语句 if (表达式) then --表达式为1时执行的语句 else --表达 ... 
- 使用Photon引擎进行unity网络游戏开发(三)——网络游戏大厅及房间
			使用Photon引擎进行unity网络游戏开发(三)--网络游戏大厅及房间 Photon PUN Unity 网络游戏开发 连接到Photon ConnectUsingSettings 设置你的客户端 ... 
- Prometheus+Grafana监控部署实践
			参考文档: Prometheus github:https://github.com/prometheus grafana github:https://github.com/grafana/graf ... 
- idea的快捷键(复制)
			IntelliJ Idea 常用快捷键列表 Ctrl+Shift + Enter,语句完成“!”,否定完成,输入表达式时按 “!”键Ctrl+E,最近的文件Ctrl+Shift+E,最近更改的文件Sh ... 
