【Luogu1912】【NOI2009】诗人小G(动态规划)

题面

洛谷

题解

原来\(NOI\)这么多神仙题。。。

考虑一个极其明显的\(dp\)

设\(f[i]\)表示前\(i\)个句子产生的最小代价

转移也很显然,就懒得写了。

仔细思考一下,转移具有单调性。

但是我们用单调队列似乎无法直接维护。

继续思考一下,我们的转移结果一定是从前面一个位置转移过来的

并且一定是一段连续的位置都由那个位置转移过来。

同时,如果\(i\)从\(j\)转移过来,\(i+1\)从\(k\)转移过来,其中\(j<k\)

那么,一定不存在\(x>i\),使得\(x\)从\(j\)转移。

因此决策也具有单调性。

所以利用一个单调队列来维护一下决策的单调性。

维护一下当前点影响的范围。

每次插入新点的时候,这个点影响的范围一定是一个位置\(x\)到\(n\)

所以二分一下这个位置就好了

时间复杂度\(O(Tnlognlogp)\),复杂度来自于二分+快速幂

又一次成为了cin/cout选手

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 111111
#define double long double
struct Node{int j,l,r;}Q[MAX];
int a[MAX],n,L,P,h,t,g[MAX],S[MAX],top;
string ch[MAX];
double f[MAX];
ll s[MAX];
double fpow(double a,int b)
{
double s=1;
while(b){if(b&1)s*=a;a*=a;b>>=1;}
return s;
}
double Calc(int i,int j){return f[j]+fpow(fabs(s[i]-s[j]-1-L),P);}
int main()
{
ios::sync_with_stdio(false);
int T;cin>>T;
while(T--)
{
cin>>n>>L>>P;
for(int i=1;i<=n;++i){cin>>ch[i];a[i]=ch[i].length();}
for(int i=1;i<=n;++i)s[i]=s[i-1]+a[i]+1;
memset(Q,0,sizeof(Q));
Q[h=t=1]=(Node){0,1,n};
for(int i=1;i<=n;++i)
{
while(h<t&&Q[h].r<i)++h;
int j=Q[h].j;Q[h].l++;
f[i]=Calc(i,j);g[i]=j;
while(h<t&&Calc(Q[t].l,Q[t].j)>=Calc(Q[t].l,i))--t;
int l=Q[t].l,r=Q[t].r,ret=Q[t].r+1;
while(l<=r)
{
int mid=(l+r)>>1;
if(Calc(mid,i)<=Calc(mid,Q[t].j))ret=mid,r=mid-1;
else l=mid+1;
}
if(ret!=Q[t].l)Q[t].r=ret-1;else --t;
if(ret<=n)Q[++t]=(Node){i,ret,n};
}
if(f[n]>1e18)cout<<"Too hard to arrange"<<endl;
else
{
cout<<(ll)f[n]<<endl;
top=0;
for(int i=n;i;i=g[i])S[++top]=i;S[top+1]=0;
for(int i=top;i;--i)
for(int j=S[i+1]+1;j<=S[i];++j)
{
cout<<ch[j];
if(j!=S[i])cout<<' ';
else cout<<endl;
}
}
cout<<"--------------------"<<endl;
}
return 0;
}

【Luogu1912】【NOI2009】诗人小G(动态规划)的更多相关文章

  1. bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)

    目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...

  2. 1563: [NOI2009]诗人小G

    1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...

  3. [NOI2009]诗人小G --- DP + 决策单调性

    [NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...

  4. P1912 [NOI2009]诗人小G

    P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f( ...

  5. LG1912 [NOI2009]诗人小G

    题意 题目描述 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以 ...

  6. [NOI2009] 诗人小G [题解]

    诗人小G 题目大意 给出 \(n\) 个长度不超过 \(30\) 的句子,要求你对其进行排版. 对于每一行,有一个规定的行标准长度 \(L\) ,每一行的不协调度等于该行的实际长度与行标准长度差的绝对 ...

  7. 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)

    洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...

  8. BZOJ1563 NOI2009诗人小G(动态规划+决策单调性)

    设f[i]为前i行的最小不协调度,转移枚举这一行从哪开始,显然有f[i]=min{f[j]+abs(s[i]-s[j]+i-j-1-m)p}.大胆猜想有决策单调性就好了.证明看起来很麻烦,从略.注意需 ...

  9. NOI2009 诗人小G

    Sol 决策单调性+二分 传说中的四边形不等式...其实做了这道题还是不会... 证明简直吃屎//// 贴个传送门这里有部分分做法还有决策单调性的证明 byvoid ISA tell me that ...

  10. [bzoj1563][NOI2009]诗人小G(决策单调性优化)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1563 分析: 首先可得朴素的方程:f[i]=min{f[j]+|s[j]-j-s[i] ...

随机推荐

  1. jquery.validate使用 - 3

    自定义jquery-validate的验证行为 1: 自定义表单提交 设置submitHandler来自定义表单提交动作 $(".selector").validate({    ...

  2. xgboost算法教程(两种使用方法)

    标签: xgboost 作者:炼己者 ------ 欢迎大家访问我的简书以及我的博客 本博客所有内容以学习.研究和分享为主,如需转载,请联系本人,标明作者和出处,并且是非商业用途,谢谢! ------ ...

  3. 在 Centos7 用Jexus服务器 运行.Net Core 只需几部

    1.安装 .Net SDK 不需要按照 .net core runtime,sdk 依赖于运行时会自动安装 第一步 添加dotnet源 sudo rpm -Uvh https://packages.m ...

  4. 前端 CDNJS 库及 Google Fonts、Ajax 和 Gravatar 国内加速服务

    由于某些众所周知的原因,好多开源的 JS 库采用的国外 CDN 托管方式在国内访问速度不如人意.所以我们特意制作了这个公益项目,托管了 CDNJS 的所有开源 JS 库以及反代了 Google Fon ...

  5. python开发ftp服务器第一天(pyftpdlib)

    学习了大约快一个月的python,现在开始有意识做一些项目.(我的新书<Python爬虫开发与项目实战>出版了,大家可以看一下样章) 据我了解,python现在更多的是用于自动化运维方面, ...

  6. 【SpringCloud】第十一篇: 断路器监控(Hystrix Dashboard)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  7. 第四次ScrumMeeting博客

    第四次ScrumMeeting博客 本次会议于10月28日(六)22时整在3公寓725房间召开,持续15分钟. 与会人员:刘畅.辛德泰.窦鑫泽.张安澜.赵奕. 1. 每个人的工作(有Issue的内容和 ...

  8. Linux下文件的打包、解压缩指令——tar,gzip,bzip2

    本文是对 鸟叔的Linux私房菜(基础学习篇) 第三版 的学习笔记,原文可参考原书中文网站 鸟叔的Linux私房菜.更多详细信息可直接参考对应Linux命令的 man 帮助( 如 man tar). ...

  9. nginx upstream 名称下划线问题

    原始配置: user  nobody;worker_processes  1; #pid        logs/nginx.pid; worker_connections  1024;} http ...

  10. PHP中的闭包详解

    PHP闭包(Closure)使用详解 作者: 字体:[增加 减小] 类型:转载 时间:2013-05-02我要评论 本篇文章介绍了,PHP闭包(Closure)的使用介绍,需要的朋友参考下   不知不 ...