Asteroids
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 481   Accepted: 152   Special Judge

Description

Association of Collision Management (ACM) is planning to perform the controlled collision of two asteroids. The asteroids will be slowly brought together and collided at negligible speed. ACM expects asteroids to get attached to each other and form a stable
object. 

Each asteroid has the form of a convex polyhedron. To increase the chances of success of the experiment ACM wants to bring asteroids together in such manner that their centers of mass are as close as possible. To achieve this, ACM operators can rotate the asteroids
and move them independently before bringing them together. 

Help ACM to find out what minimal distance between centers of mass can be achieved. 

For the purpose of calculating center of mass both asteroids are considered to have constant density.

Input

Input file contains two descriptions of convex polyhedra. 

The first line of each description contains integer number n - the number of vertices of the polyhedron (4 <= n <= 60). The following n lines contain three integer numbers xi, yi, zi each - the coordinates of the polyhedron vertices (-104 <= xi,
yi, zi <= 104). It is guaranteed that the given points are vertices of a convex polyhedron, in particular no point belongs to the convex hull of other points. Each polyhedron is non-degenerate. 

The two given polyhedra have no common points.

Output

Output one floating point number - the minimal distance between centers of mass of the asteroids that can be achieved. Your answer must be accurate up to 10-5.

Sample Input

8
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
5
0 0 5
1 0 6
-1 0 6
0 1 6
0 -1 6

Sample Output

0.75
分析:分别求出重心到面的最短距离:
#include"stdio.h"
#include"string.h"
#include"iostream"
#include"map"
#include"string"
#include"queue"
#include"stack"
#include"vector"
#include"stdlib.h"
#include"algorithm"
#include"math.h"
#define M 533
#define eps 1e-10
#define inf 0x3f3f3f3f
#define mod 1070000009
#define PI acos(-1.0)
using namespace std;
struct node
{
double x,y,z,dis;
node(){}
node(double xx,double yy,double zz):x(xx),y(yy),z(zz){}
node operator +(const node p)
{
return node(x+p.x,y+p.y,z+p.z);
}
node operator -(const node p)
{
return node(x-p.x,y-p.y,z-p.z);
}
node operator *(const node p)
{
return node(y*p.z-z*p.y,z*p.x-x*p.z,x*p.y-y*p.x);
}
node operator *(const double p)
{
return node(x*p,y*p,z*p);
}
node operator /(const double p)
{
return node(x/p,y/p,z/p);
}
double operator ^(const node p)
{
return x*p.x+y*p.y+z*p.z;
}
};
struct threeD_convex_hull
{
struct face
{
int a,b,c;
int ok;
};
int n;
int cnt;
node p[M];
face f[M*8];
int to[M][M];
double len(node p)
{
return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
}
double area(node a,node b,node c)
{
return len((b-a)*(c-a));
}
double volume(node a,node b,node c,node d)
{
return (b-a)*(c-a)^(d-a);
}
double ptof(node q,face f)
{
node m=p[f.b]-p[f.a];
node n=p[f.c]-p[f.a];
node t=q-p[f.a];
return m*n^t;
}
void dfs(int q,int cur)
{
f[cur].ok=0;
deal(q,f[cur].b,f[cur].a);
deal(q,f[cur].c,f[cur].b);
deal(q,f[cur].a,f[cur].c);
}
void deal(int q,int a,int b)
{
int fa=to[a][b];
face add;
if(f[fa].ok)
{
if(ptof(p[q],f[fa])>eps)
dfs(q,fa);
else
{
add.a=b;
add.b=a;
add.c=q;
add.ok=1;
to[b][a]=to[a][q]=to[q][b]=cnt;
f[cnt++]=add;
}
}
}
int same(int s,int t)
{
node a=p[f[s].a];
node b=p[f[s].b];
node c=p[f[s].c];
if(fabs(volume(a,b,c,p[f[t].a]))<eps
&&fabs(volume(a,b,c,p[f[t].b]))<eps
&&fabs(volume(a,b,c,p[f[t].c]))<eps)
return 1;
return 0;
}
void make()
{
cnt=0;
if(n<4)
return;
int sb=1;
for(int i=1;i<n;i++)
{
if(len(p[0]-p[i])>eps)
{
swap(p[1],p[i]);
sb=0;
break;
}
}
if(sb)return;
sb=1;
for(int i=2;i<n;i++)
{
if(len((p[1]-p[0])*(p[i]-p[0]))>eps)
{
swap(p[2],p[i]);
sb=0;
break;
}
}
if(sb)return;
sb=1;
for(int i=3;i<n;i++)
{
if(fabs(volume(p[0],p[1],p[2],p[i]))>eps)
{
swap(p[3],p[i]);
sb=0;
break;
}
}
if(sb)return;
face add;
for(int i=0;i<4;i++)
{
add.a=(i+1)%4;
add.b=(i+2)%4;
add.c=(i+3)%4;
add.ok=1;
if(ptof(p[i],add)>eps)
swap(add.c,add.b);
to[add.a][add.b]=to[add.b][add.c]=to[add.c][add.a]=cnt;
f[cnt++]=add;
}
for(int i=4;i<n;i++)
{
for(int j=0;j<cnt;j++)
{
if(f[j].ok&&ptof(p[i],f[j])>eps)
{
dfs(i,j);
break;
}
}
}
int tmp=cnt;
cnt=0;
for(int i=0;i<tmp;i++)
if(f[i].ok)
f[cnt++]=f[i];
}
double Area()//表面积
{
double S=0;
if(n==3)
{
S=area(p[0],p[1],p[2])/2.0;
return S;
}
for(int i=0;i<cnt;i++)
S+=area(p[f[i].a],p[f[i].b],p[f[i].c]);
return S/2.0;
}
double Volume()//体积
{
double V=0;
node mid(0,0,0);
for(int i=0;i<cnt;i++)
V+=volume(p[f[i].a],p[f[i].b],p[f[i].c],mid);
V=fabs(V)/6.0;
return V;
}
int tringleCnt()
{
return cnt;
}
int faceCnt()
{
int num=0;
for(int i=0;i<cnt;i++)
{
int flag=1;
for(int j=0;j<i;j++)
{
if(same(i,j))
{
flag=0;
break;
}
}
num+=flag;
}
return num;
}
double pf_dis(face f,node q)//点到面的距离
{
double V=volume(p[f.a],p[f.b],p[f.c],q);
double S=area(p[f.a],p[f.b],p[f.c]);
return fabs(V/S);
}
double min_dis(node q)//暴力搜索内部的点q到面的最短距离即体积/面积
{
double mini=inf;
for(int i=0;i<cnt;i++)
{
double h=pf_dis(f[i],q);
if(mini>h)
mini=h;
}
return mini;
}
node barycenter()
{
node ret(0,0,0),mid(0,0,0);
double sum=0;
for(int i=0;i<cnt;i++)
{
double V=volume(p[f[i].a],p[f[i].b],p[f[i].c],mid);
ret=ret+(mid+p[f[i].a]+p[f[i].b]+p[f[i].c])/4.0*V;
sum+=V;
}
ret=ret/sum;
return ret;
} }hull;
/*int main()
{
while(scanf("%d",&hull.n)!=EOF)
{
for(int i=0;i<hull.n;i++)
scanf("%lf%lf%lf",&hull.p[i].x,&hull.p[i].y,&hull.p[i].z);
hull.make();
printf("%d\n",hull.faceCnt());
}
return 0;
}*/
int main()
{
while(scanf("%d",&hull.n)!=-1)
{
for(int i=0;i<hull.n;i++)
scanf("%lf%lf%lf",&hull.p[i].x,&hull.p[i].y,&hull.p[i].z);
hull.make();
node center=hull.barycenter();
double min1=hull.min_dis(center);
scanf("%d",&hull.n);
for(int i=0;i<hull.n;i++)
scanf("%lf%lf%lf",&hull.p[i].x,&hull.p[i].y,&hull.p[i].z);
hull.make();
center=hull.barycenter();
double min2=hull.min_dis(center);
printf("%.5lf\n",min1+min2);
}
return 0;
}

三维凸包(两个没有公共点)经过旋转平移后使其重心相距最近(POJ3862)的更多相关文章

  1. hdu4449Building Design(三维凸包+平面旋转)

    链接 看了几小时也没看懂代码表示的何意..无奈下来问问考研舍友. 还是考研舍友比较靠谱,分分钟解决了我的疑问. 可能三维的东西在纸面上真的不好表示,网上没有形象的题解,只有简单"明了&quo ...

  2. hdu4273Rescue(三维凸包重心)

    链接 模板题已不叫题.. 三维凸包+凸包重心+点到平面距离(体积/点积)  体积-->混合积(先点乘再叉乘) #include <iostream> #include<cstd ...

  3. POJ 2225 / ZOJ 1438 / UVA 1438 Asteroids --三维凸包,求多面体重心

    题意: 两个凸多面体,可以任意摆放,最多贴着,问他们重心的最短距离. 解法: 由于给出的是凸多面体,先构出两个三维凸包,再求其重心,求重心仿照求三角形重心的方式,然后再求两个多面体的重心到每个多面体的 ...

  4. hdu 4273 2012长春赛区网络赛 三维凸包中心到最近面距离 ***

    新模板 /* HDU 4273 Rescue 给一个三维凸包,求重心到表面的最短距离 模板题:三维凸包+多边形重心+点面距离 */ #include<stdio.h> #include&l ...

  5. bzoj 1964: hull 三维凸包 计算几何

    1964: hull 三维凸包 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 54  Solved: 39[Submit][Status][Discuss ...

  6. POJ 3528 求三维凸包表面积

    也是用模板直接套的题目诶 //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include < ...

  7. 三维凸包求其表面积(POJ3528)

    Ultimate Weapon Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 2074   Accepted: 989 D ...

  8. 三维凸包求凸包表面的个数(HDU3662)

    3D Convex Hull Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. 三维凸包求重心到面的最短距离(HDU4273)

    http://acm.hdu.edu.cn/showproblem.php?pid=4273 Rescue Time Limit: 2000/1000 MS (Java/Others)    Memo ...

随机推荐

  1. 基于Java的四大开源测试工具

    摘要:成功的应用程序离不开测试人员和QA团队反复地测试,应用程序在进行最后的部署之前,需要通过测试来确保它的负载管理能力以及在特殊情况下的工作条件和工作加载情况. %R[)vA t]N0 测试是应用程 ...

  2. python中的高阶函数

    高阶函数英文叫Higher-order function.什么是高阶函数?我们以实际代码为例子,一步一步深入概念. 变量可以指向函数 以Python内置的求绝对值的函数abs()为例,调用该函数用以下 ...

  3. MySQL无法重启问题解决Warning: World-writable config file ‘/etc/mysql/my.cnf’ is ignored

    今天在修改mysql数据库的配置文件,由于方便操作,就将“/etc/mysql/my.cnf” 的权限设置成 “777” 了,然后进行修改,当修改完进行重启mysql的时候,却报错,提示Warning ...

  4. hdu2147 kiki&#39;s game(博弈)

    这个是纳什博弈?不知道怎么看的 依据PN图,从左下角開始推 左下角P 最后一行都是PNPNPN 第一列都是 P N P N P 完了填完即可了 #include<cstdio> int m ...

  5. js+css+div的点击后显示或者隐藏

    <html ><head><meta charset=utf-8 /><title>JS Bin</title></head>  ...

  6. layer弹出层效果

    layer是一款近年来备受青睐的web弹层组件,她具备全方位的解决方案,致力于服务各水平段的开发人员,您的页面会轻松地拥有丰富友好的操作体验. http://layer.layui.com/ 演示:h ...

  7. 监听程序未启动或数据库服务未注册到该监听程序。启动该监听程序并注册数据库服务 然后重新运行 em configuration assistant。

    在WIN 7/64Bit上安装ORACLE 11gR2后,管理网页Database Control(如:https://localhost:1158/em)始终登录不进去,总是说密码错误,使用配置工具 ...

  8. Javascript定义类(class)的最新方法

    极简主义法 3.1 封装 这种方法不使用this和prototype,代码部署起来非常简单,这大概也是它被叫做"极简主义法"的原因. 首先,它也是用一个对象模拟"类&qu ...

  9. Http post请求数据带中文参数问题

    Http请求参数带中文参数时,如{"userName":"用户名123","password":"123456"} 请求 ...

  10. POJ 1038 Bug Integrated Inc(状态压缩DP)

    Description Bugs Integrated, Inc. is a major manufacturer of advanced memory chips. They are launchi ...