Dragon Balls

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7926    Accepted Submission(s): 2937

Problem Description
Five hundred years later, the number of dragon balls will increase unexpectedly, so it's too difficult for Monkey King(WuKong) to gather all of the dragon balls together.

His country has N cities and there are exactly N dragon balls in the world. At first, for the ith dragon ball, the sacred dragon will puts it in the ith city. Through long years, some cities' dragon ball(s) would be transported to other cities. To save physical strength WuKong plans to take Flying Nimbus Cloud, a magical flying cloud to gather dragon balls.
Every time WuKong will collect the information of one dragon ball, he will ask you the information of that ball. You must tell him which city the ball is located and how many dragon balls are there in that city, you also need to tell him how many times the ball has been transported so far.
 
Input
The first line of the input is a single positive integer T(0 < T <= 100).
For each case, the first line contains two integers: N and Q (2 < N <= 10000 , 2 < Q <= 10000).
Each of the following Q lines contains either a fact or a question as the follow format:
  T A B : All the dragon balls which are in the same city with A have been transported to the city the Bth ball in. You can assume that the two cities are different.
  Q A : WuKong want to know X (the id of the city Ath ball is in), Y (the count of balls in Xth city) and Z (the tranporting times of the Ath ball). (1 <= A, B <= N)
 
Output
For each test case, output the test case number formated as sample output. Then for each query, output a line with three integers X Y Z saparated by a blank space.
 
Sample Input
2
3 3
T 1 2
T 3 2
Q 2
3 4
T 1 2
Q 1
T 1 3
Q 1
 
Sample Output
Case 1:
2 3 0
Case 2:
2 2 1
3 3 2
 
Author
possessor WC
 
Source
 
题目意思:
给你n个物品,从1到n编号
现在对n有m个操作
T A B 把A所在集合的物品全部移到B所在的集合(移动的物品包括A)
Q X 问你X所在集合的编号,x所在集合的结点数量,和x移到的次数
注意:
比如样例1:1移到2,然后3移到2,因为是移到2,所以集合编号就是2,注意理解
此时Q 1,那么1所在集合编号就是2,因为是移到2去的,1所在集合的结点数量是3
那么此时1的移到此时是1
注意理解移动次数数组
具体参考代码
#include<queue>
#include<set>
#include<cstdio>
#include <iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
#include<string>
#include<string.h>
#include<memory>
using namespace std;
#define max_v 10005
#define INF 9999999
int pa[max_v];
int num[max_v];//num[i] i所在集合内含有结点个数
int mov[max_v];//mov[i] i移动的次数
int n,m;
void init()
{
for(int i=; i<=n; i++)
{
pa[i]=i;
num[i]=;
mov[i]=;
}
}
int find_set(int x)
{
if(pa[x]!=x)
{
int t=pa[x];
pa[x]=find_set(pa[x]);
mov[x]+=mov[t];//孩子结点的移动次数会与其父亲结点移动次数相关
}
return pa[x];
}
void union_set(int x,int y)
{
int fx=find_set(x);
int fy=find_set(y); if(fx!=fy)
{
pa[fx]=fy;
num[fy]+=num[fx];//合并之后大集合的结点数等于原来两个小集合结点数目之和
mov[fx]++;//x的根结点 移动次数++ x的移动次数在find_set函数里面更新
}
}
int main()
{
int t;
int x,y;
char str[];
int c=;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&n,&m);
init();
printf("Case %d:\n",c++);
for(int i=; i<m; i++)
{
scanf("%s",str);
if(str[]=='T')
{
scanf("%d %d",&x,&y);
union_set(x,y);
}
else if(str[]=='Q')
{
scanf("%d",&x);
int k=find_set(x);
printf("%d %d %d\n",k,num[k],mov[x]);
}
}
}
return ;
}
/*
题目意思:
给你n个物品,从1到n编号
现在对n有m个操作
T A B 把A所在集合的物品全部移到B所在的集合(移动的物品包括A)
Q X 问你X所在集合的编号,x所在集合的结点数量,和x移到的次数 注意:
比如样例1:1移到2,然后3移到2,因为是移到2,所以集合编号就是2,注意理解
此时Q 1,那么1所在集合编号就是2,因为是移到2去的,1所在集合的结点数量是3
那么此时1的移到此时是1 注意理解移动次数数组 具体参考代码
*/

HDU 3635 Dragon Balls(超级经典的带权并查集!!!新手入门)的更多相关文章

  1. HDU Virtual Friends(超级经典的带权并查集)

    Virtual Friends Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. HDU 3047 带权并查集 入门题

    Zjnu Stadium 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=3047 Problem Description In 12th Zhejian ...

  3. HDU 1829 A Bug's Life 【带权并查集/补集法/向量法】

    Background Professor Hopper is researching the sexual behavior of a rare species of bugs. He assumes ...

  4. hdu 3038 How Many Answers Are Wrong ( 带 权 并 查 集 )

    How Many Answers Are Wrong Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  5. HDU 3038 How Many Answers Are Wrong(带权并查集)

    太坑人了啊,读入数据a,b,s的时候,我刚开始s用的%lld,给我WA. 实在找不到错误啊,后来不知怎么地突然有个想法,改成%I64d,竟然AC了 思路:我建立一个sum数组,设i的父亲为fa,sum ...

  6. HDU 3038 - How Many Answers Are Wrong - [经典带权并查集]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3038 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  7. 洛谷 1196 [NOI2002]银河英雄传说【模板】带权并查集

    [题解] 经典的带权并查集题目. 设cnt[i]表示i前面的点的数量,siz[i]表示第i个点(这个点是代表元)所处的联通块的大小:合并的时候更新siz.旧的代表元的cnt,路径压缩的时候维护cnt即 ...

  8. 并查集例题02.带权并查集(poj1182)

    Description 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A.现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底 ...

  9. hdu 5441 Travel 离线带权并查集

    Travel Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5441 De ...

随机推荐

  1. python可变容器类型做函数参数的坑

    def extendList(val, list=[]): # []默认参数的只指向一个地址 list.append(val) return list list1 = extendList(10) l ...

  2. 第九天- 文件操作 r w a 文件复制/修改

    文件操作简介:使用python来读写文件是非常简单的操作.我们使用 open() 函数来打开一个文件,获取到文件句柄.然后通过文件句柄就可以进行各种各样的操作了.根据打开⽅方式的不同能够执行的操作也会 ...

  3. SJ定理——省选前的学习2

    ——博弈论?上SG定理!什么?不行?那就SJ定理吧. 原来还有这么个玩意... bzoj1022. 大意是Nim取石子游戏中取到最后一个石子就算输,即无法取了就获胜(原版是无法取了就输). 我们试图套 ...

  4. BZOJ P4720[Noip2016]换教室____solution

    题目太长不表 <--无形传送,最为致命 学习一点数学期望的基础,预处理最短路,然后加上DP即可.(废话) 理解决策和结果的差别: 在这里每阶段的决策有两个:申请|不申请 结果有两个:换|不换 然 ...

  5. How to fix Mysql table crashes

    Whenever you enconter this: Please use mysql_upgrade to fix this error. or using  mysql_upgrade -u r ...

  6. Apache + WordPress + SSL 完全指南

    似乎不少使用国外主机的站长都想弄个 https:// "玩",但是许多人对 SSL/TLS.HTTPS.证书等概念了解有限,而中文互联网上相关的教程也不是很完备,各种杂乱.正好,本 ...

  7. c++开源日志log4cplus使用开发文档

    下载地址:http://files.cnblogs.com/files/lizhigang/LOG4CPLUS%E5%BC%80%E5%8F%91%E4%B8%8E%E4%BD%BF%E7%94%A8 ...

  8. Android 虚拟多开系列一——技术调研

    参考链接:http://weishu.me Github源码链接:             国内Xposed框架源码链接                               VirtualAp ...

  9. mvn install 时候报GBK编码错误解决办法

    在pom.xml里面 <properties> <!-- 文件拷贝时的编码 --> <project.build.sourceEncoding>UTF-</p ...

  10. 平台支持的从经典部署模型到 Azure Resource Manager 的 IaaS 资源迁移

    本文介绍如何才能将基础结构即服务 (IaaS) 资源从经典部署模型迁移到 Resource Manager 部署模型. 用户可以阅读有关 Azure Resource Manager 功能和优点的更多 ...