Hive(10)-文件存储格式
Hive支持的存储数据的格式主要有:TEXTFILE 、SEQUENCEFILE、ORC、PARQUET
一. 列式存储和行式存储

左边为逻辑表,右边第一个为行式存储,第二个为列式存储
1. 行式存储的特点
查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。
2.列式存储的特点
因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。
TEXTFILE和SEQUENCEFILE的存储格式都是基于行存储的;
ORC和PARQUET是基于列式存储的。
二. TextFile格式
默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用,但使用Gzip这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。
三. Orc格式
Orc (Optimized Row Columnar)是Hive 0.11版里引入的新的存储格式。

每个Orc文件由1个或多个stripe组成,每个stripe一般为HDFS的块大小,每一个stripe包含多条记录,这些记录按照列进行独立存储,对应到Parquet中的row group的概念。每个Stripe里有三部分组成,分别是Index Data,Row Data,Stripe Footer.
1)Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引应该只是记录某行的各字段在Row Data中的offset。
2)Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。
3)Stripe Footer:存的是各个Stream的类型,长度等信息。
每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。
四. Parquet格式
Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。
1) 行组(Row Group):每一个行组包含一定的行数,在一个HDFS文件中至少存储一个行组,类似于orc的stripe的概念。
2) 列块(Column Chunk):在一个行组中每一列保存在一个列块中,行组中的所有列连续的存储在这个行组文件中。一个列块中的值都是相同类型的,不同的列块可能使用不同的算法进行压缩。
3) 页(Page):每一个列块划分为多个页,一个页是最小的编码的单位,在同一个列块的不同页可能使用不同的编码方式。
通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。

一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。
Hive(10)-文件存储格式的更多相关文章
- 大数据:Hive - ORC 文件存储格式
一.ORC File文件结构 ORC的全称是(Optimized Row Columnar),ORC文件格式是一种Hadoop生态圈中的列式存储格式,它的产生早在2013年初,最初产生自Apache ...
- Hive - ORC 文件存储格式【转】
一.ORC File文件结构 ORC的全称是(Optimized Row Columnar),ORC文件格式是一种Hadoop生态圈中的列式存储格式,它的产生早在2013年初,最初产生自Apache ...
- 【图解】Hive文件存储格式
摘自:https://blog.csdn.net/xueyao0201/article/details/79103973 引申阅读原理篇: 大数据:Hive - ORC 文件存储格式 大数据:Parq ...
- hive常见的存储格式
Hive常见文件存储格式 背景:列式存储和行式存储 首先来看一下一张表的存储格式: 字段A 字段B 字段C A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 A5 B5 C5 行 ...
- Hive文件存储格式
hive文件存储格式 1.textfile textfile为默认格式 存储方式:行存储 磁盘开销大 数据解析开销大 压缩的text文件 hive无法进行合并和拆分 2.sequencef ...
- Hive文件存储格式和hive数据压缩
一.存储格式行存储和列存储 二.Hive文件存储格式 三.创建语句和压缩 一.存储格式行存储和列存储 行存储可以理解为一条记录存储一行,通过条件能够查询一整行数据. 列存储,以字段聚集存储,可以理解为 ...
- Hive性能调优(一)----文件存储格式及压缩方式选择
合理使用文件存储格式 建表时,尽量使用 orc.parquet 这些列式存储格式,因为列式存储的表,每一列的数据在物理上是存储在一起的,Hive查询时会只遍历需要列数据,大大减少处理的数据量. 采用合 ...
- hive从入门到放弃(六)——常用文件存储格式
hive 存储格式有很多,但常用的一般是 TextFile.ORC.Parquet 格式,在我们单位最多的也是这三种 hive 默认的文件存储格式是 TextFile. 除 TextFile 外的其他 ...
- Hive-ORC文件存储格式
ORC文件格式是从Hive-0.11版本开始的.关于ORC文件格式的官方文档,以及基于官方文档的翻译内容这里就不赘述了,有兴趣的可以仔细研究了解一下.本文接下来根据论文<Major Techni ...
随机推荐
- 产品从生到死的N宗罪
写在前面 昨天晚上做了一个梦,大概就是跟CTO,PM在说着什么..现在回想起好像就是说产品怎么怎么的..:索性就吐槽下这几个项目生与死的N宗罪吧.. 特别提示: 本文为全方位吐槽型,前方多处具有针对性 ...
- 沉淀再出发:ElasticSearch的中文分词器ik
沉淀再出发:ElasticSearch的中文分词器ik 一.前言 为什么要在elasticsearch中要使用ik这样的中文分词呢,那是因为es提供的分词是英文分词,对于中文的分词就做的非常不好了 ...
- Python 常用文件
获取当前文件的路径: from os import path d = path.dirname(__file__) #返回当前文件所在的目录 # __file__ 为当前文件, 若果在ide中运行此行 ...
- Economy a Two-Edged Sword for Democrats
2017-05-03 12:05:07 https://www.usnews.com/news/blogs/ken-walshs-washington/2014/10/03/economy-a-two ...
- Github文件夹下载到本地
1.如图:需要将以下文件夹下载到本地. https://github.com/aspnet/Docs/tree/master/aspnet/mvc/overview/getting-started/i ...
- 聊聊host中ip/域名映射记录的解析规则
今天宝叔突然在群里发了个问题; host做如下配置,a.com会指向哪里?或者说ping一下a.com结果会是什么? 127.0.0.1 a.com 192.168.4.106 a.com 192.1 ...
- iOS动画的逻辑结构:动画的定义--动画是采用连续播放静止图像的方法产生物体运动的效果。
动画的定义:视图+时间+空间+速度 视图信息的时空变换: 视图组的按时间逐帧展示: Core Animation 类的继承关系图 各类常用属性 CAMediaTiming:CALayer和Core A ...
- POJ1375 Intervals
嘟嘟嘟 题意简述:给出一个光源\((x_0, y_0)\),和一些圆,求投影区间. 这道题其实就是求经过\((x_0, y_0)\))的圆的切线. 刚开始我想到了一个用向量旋转的方法,但是写起来特别麻 ...
- 推荐一个WPF仪表盘开源控件
前段时间,做服务器端监控系统,为了界面好看,采用WPF.硬件相关监控,比如CPU.内存等,想用仪表盘控件.网上找了很多这种控件,基本上都是第三方商业控件(虽然很漂亮,不过得money...).最后在C ...
- urlparse 用法
ifrom urllib2 import urlparse ‘’ captcha_id = urlparse.parse_qs(urlparse.urlparse(link).query, True) ...