【[POI2014]HOT-Hotels】
魏佬怒嘲我只会做给定一棵树,输出有多少个点这种问题
不过我连这个也不会做
还算一道不错的树上数数题目
但是我一直不会数数
求树上所有的三元组\((u,v,t)\),满足\(dis(u,v)=dis(u,t)=dis(v,t)\)的个数
感觉好神仙啊,一眼不会的感觉
之后试着挖掘一下性质,发现只要我们需要找一个点\(x\)使得这三个点到\(dis(x,u)=dis(x,v)=dis(x,t)\)好像就可以了
吗?
显然不行啊

就比如这一棵树,确实这里是有\(dis(x,u)=dis(v,x)=dis(t,x)=2\),但是\(dis(u,v)=2\),而\(dis(t,u)=4\),这显然并不对
所以这个性质还得有一个限制条件,就是\(x=LCA(u,v)\)
我们把问题分成两步
\(u,v,t\)在一棵子树里
\(u,v\)在一棵子树里,\(t\)在子树外
有没有\(up\ and\ down\)的意味了,在\(up\)里我们就能统计第一种情况的答案了
我们定义\(dp[x][j]\)表示在\(x\)的子树内部有多少个点到达\(x\)的距离为\(j\),显然这个非常好转移
\(f[x][j]\)表示在\(x\)的子树内部,有多少对\((u,v)\)满足\(dis(u,v)=j\),且\(LCA(u,v)=x\),这个在合并子树的时候也可顺边求出来
而合并子树的时候,我们每次合并的时候就可以统计第一种答案了,由于\(u\)和\(v\)显然不能来自于同一棵子树内部,所以合并的时候直接拿这个去乘上之前的\(f[x][j]\)就好了
第二种情况,我们直接\(down\)下来,首先还是先\(down\)一下\(dp\)数组,求出子树外部到\(x\)距离为\(j\)的点有多少个,这些点就可以作为\(t\),之后乘上\((u,v)\)点对的数量,我们就可以把答案合并出来了
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 5001
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
struct E
{
short v,nxt;
}e[maxn<<1];
short deep[maxn],head[maxn],md[maxn];
int dp[maxn][maxn],f[maxn][maxn];
int n,num;
LL ans;
inline void add_edge(int x,int y)
{
e[++num].v=y;
e[num].nxt=head[x];
head[x]=num;
}
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
inline LL merge(LL x,LL y)
{
return (x-1)*x/2*y;
}
void dfs(int x)
{
dp[x][0]++;
for(re int i=head[x];i;i=e[i].nxt)
if(!deep[e[i].v])
{
md[e[i].v]=deep[e[i].v]=deep[x]+1;
dfs(e[i].v);
md[x]=max(md[x],md[e[i].v]);
for(re int j=1;j<=md[x];j++)
ans+=f[x][j]*dp[e[i].v][j-1],f[x][j]+=dp[x][j]*dp[e[i].v][j-1],dp[x][j]+=dp[e[i].v][j-1];
}
}
void Redfs(int x)
{
for(re int i=head[x];i;i=e[i].nxt)
if(deep[e[i].v]>deep[x])
{
for(re int j=n;j;j--)
if(j>=2) ans+=(dp[x][j-1]-dp[e[i].v][j-2])*f[e[i].v][j],dp[e[i].v][j]+=dp[x][j-1]-dp[e[i].v][j-2];
else ans+=dp[x][j-1]*f[e[i].v][j],dp[e[i].v][j]+=dp[x][j-1];
Redfs(e[i].v);
}
}
int main()
{
n=read();
int x,y;
for(re int i=1;i<n;i++)
x=read(),y=read(),add_edge(x,y),add_edge(y,x);
md[1]=deep[1]=1;
dfs(1);
Redfs(1);
std::cout<<ans;
return 0;
}
【[POI2014]HOT-Hotels】的更多相关文章
- 【BZOJ】【3522】【POI2014】Hotel
暴力/树形DP 要求在树上找出等距三点,求方案数,那么用类似Free Tour2那样的合并方法,可以写出: f[i][j]表示以 i 为根的子树中,距离 i 为 j 的点有多少个: g[i][j]表示 ...
- 【开源】简单4步搞定QQ登录,无需什么代码功底【无语言界限】
说17号发超简单的教程就17号,qq核审通过后就封装了这个,现在放出来~~ 这个是我封装的一个开源项目:https://github.com/dunitian/LoTQQLogin ————————— ...
- 【夯实PHP基础】PHP数组,字符串,对象等基础面面观
本文地址 分享提纲 1.数组篇 2.字符创篇 3.函数篇 4.面向对象篇 5.其他篇 /*************************** 一.数组篇 Begin***************** ...
- 【Java学习系列】第3课--Java 高级教程
本文地址 可以拜读: 从零开始学 Java 分享提纲: 1. Java数据结构 2. Java 集合框架 3. Java泛型 4. Java序列化 5. Java网络编程 6. Java发送Email ...
- 【夯实PHP基础】nginx php-fpm 输出php错误日志
本文地址 原文地址 分享提纲: 1.概述 2.解决办法(解决nginx下php-fpm不记录php错误日志) 1. 概述 nginx是一个web服务器,因此nginx的access日志只有对访问页面的 ...
- 分布式学习系列【dubbo入门实践】
分布式学习系列[dubbo入门实践] dubbo架构 组成部分:provider,consumer,registry,monitor: provider,consumer注册,订阅类似于消息队列的注册 ...
- 【第三篇】ASP.NET MVC快速入门之安全策略(MVC5+EF6)
目录 [第一篇]ASP.NET MVC快速入门之数据库操作(MVC5+EF6) [第二篇]ASP.NET MVC快速入门之数据注解(MVC5+EF6) [第三篇]ASP.NET MVC快速入门之安全策 ...
- 【番外篇】ASP.NET MVC快速入门之免费jQuery控件库(MVC5+EF6)
目录 [第一篇]ASP.NET MVC快速入门之数据库操作(MVC5+EF6) [第二篇]ASP.NET MVC快速入门之数据注解(MVC5+EF6) [第三篇]ASP.NET MVC快速入门之安全策 ...
- 【初码干货】在Window Server 2016中使用Web Deploy方式发布.NET Web应用的重新梳理
在学习和工作的过程中,发现很多同事.朋友,在做.NET Web应用发布的时候,依然在走 生成-复制到服务器 这样的方式,稍微高级一点的,就是先发布到本地,再上传到服务器 这种方式不仅效率低下,而且不易 ...
- 【夯实PHP基础】PHP的反射机制
本文地址 分享提纲: 1. 介绍 2. 具体例子 2.1 创建Persion类 2.2 反射过程 2.3 反射后使用 1. 介绍 -- PHP5添加了一项新的功能:Reflection.这个功能使得p ...
随机推荐
- 局域网内配置虚拟机的hostname
一般上我们在局域网内访问,比如宿主机访问虚拟机的时候可以直接使用IP去访问,大多数情况下也都适用.但是对于有的情况,比如像新版的hbase的配置,它默认将localhost作为hbase.master ...
- Mysql压缩版forWindows安装与配置
参考:http://blog.csdn.net/wengengeng/article/details/52013650
- Java 运行时数据区域
1. 整体分类 程序计数器 虚拟机栈 本地方法栈 Java 堆 方法区 运行时常量池 直接内存 2. 程序计数器 每个线程一个计数器,线程的私有内存 指向的是字节码的内存地址? 如果线程执行的是 Ja ...
- Golang的 signal
在实际项目中我们可能有下面的需求: 1.修改了配置文件后,希望在不重启进程的情况下重新加载配置文件: 2.当用 Ctrl + C 强制关闭应用后,做一些必要的处理: 这时候就需要通过信号传递来进行处理 ...
- Spring与MyBatis整合上_Mapper动态代理方式
将MyBatis与Spring进行整合,主要解决的问题就是将SqlSessionFactory对象交由Spring来管理..所以该整合,只需将SQLSessionFactory的对象生成器S ...
- HDU 2553(N皇后)(DFS)
http://acm.hdu.edu.cn/showproblem.php?pid=2553 i表示行,map[i]表示列,然后用DFS遍历回溯 可以参考这篇文章: http://blog.csdn. ...
- docker离线安装 启动报错Job for docker.service failed because the control process exited with error code. See "systemctl status docker.service" and "journalctl -xe" for details.
安装报错的提示:systemctl status docker.service 好吧,原来是缺少库文件.验证一下想法吧,yum -y install libseccomp 成功后,再启动docker发 ...
- Bootstrap网格
首先了解一下,什么是网格? 在平面设计中,网格是一种由一系列用于组织内容的相交的直线(垂直的.水平的)组成的结构(通常是二维的).它广泛应用于打印设计中的设计布局和内容结构.在网页设计中,它是一种用于 ...
- 在ES6中如何优雅的使用Arguments和Parameters
原文地址:how-to-use-arguments-and-parameters-in-ecmascript-6 ES6是最新版本的ECMAScript标准,而且显著的改善了JS里的参数处理.我们 ...
- Chrome控制台毫无反应,打印不出信息了?
最近在使用console.log()方法的时候遇到一个奇怪的问题,打开chrome控制台想调试代码,结果控制台半天无反应,让我纳闷了半天.详情如图所示: 然后我又打开了新的标签页,不行!接着干脆关闭浏 ...