【bzoj3456】 城市规划
一句话题意,无向连通图计数
技不如人,甘拜下风
设\(f_i\)表示\(i\)个节点构成的无向连通图数量
之后。。。之后就不会了
于是抄题解
考虑容斥
\]
\(t_i\)表示\(i\)个节点构成的无向图数量,实际上\(t_i=2^{\frac{i(i-1)}{2}}\),就是每一条边都有存在或者不存在两种选择,这样显然不能保证联通
上面那个柿子的含义就是先算上所有情况,减掉不连通的,先选择\(j-1\)个点和\(1\)号节点联通,之后剩下的\(i-j\)个节点自己随便连去吧,由于两部分没有联通,所以整张图一定不会联通
我们觉得让\(f_i\)在外面孤独的待着不太好,于是我们可以把\(f_i\)放进来
就有
\]
因为当\(j=i\)的时候,\(\binom{i-1}{j-1}=t_{i-j}=1\),所以可以把\(f_i\)放进来
拆组合数
\]
\((i-1)!\)真多余,让它出来
\]
考虑生成函数,设
\]
于是我们直观发现应该写成
\]
于是\(F(x)=\frac{G(x)}{T(x)}\),多项式求逆就好了
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
const int maxn=262144+1005;
const LL mod=1004535809;
LL G[2];
LL K[maxn],T[maxn],C[maxn];
LL fac[maxn],t[maxn],pow[maxn],A[maxn],R[maxn],B[maxn],ifac[maxn];
int rev[maxn],n,len;
inline LL ksm(LL a,LL b) {LL S=1;while(b) {if(b&1) S=S*a%mod;b>>=1;a=a*a%mod;}return S;}
inline void NTT(LL *f,int o) {
for(re int i=0;i<len;i++) if(i<rev[i]) std::swap(f[i],f[rev[i]]);
for(re int i=2;i<=len;i<<=1) {
int ln=i>>1;LL og1=ksm(G[o],(mod-1)/i);
for(re int l=0;l<len;l+=i) {
LL t,og=1;
for(re int x=l;x<l+ln;x++) {
t=(og*f[ln+x])%mod;
f[ln+x]=(f[x]-t+mod)%mod;
f[x]=(f[x]+t)%mod;
og=(og*og1)%mod;
}
}
}
if(!o) return;
LL inv=ksm(len,mod-2);
for(re int i=0;i<len;i++) f[i]=(f[i]*inv)%mod;
}
inline void mul(int n,LL *A,LL *B) {
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
NTT(A,0),NTT(B,0);for(re int i=0;i<len;i++) A[i]=(A[i]*B[i])%mod;
NTT(A,1);for(re int i=n;i<len;i++) A[i]=0;
}
inline void Inv(int n,LL *A,LL *B) {
if(n==1) {B[0]=ksm(A[0],mod-2);return;}
Inv((n+1)>>1,A,B);
memset(C,0,sizeof(C));memset(T,0,sizeof(T));memset(K,0,sizeof(K));
for(re int i=0;i<n;i++) C[i]=K[i]=B[i],T[i]=A[i];
mul(n,C,K);mul(n,C,T);
for(re int i=0;i<n;i++) B[i]=(2ll*B[i]-C[i]+mod)%mod;
}
int main() {
G[0]=3,G[1]=ksm(3,mod-2);
scanf("%d",&n);
pow[0]=1;for(re int i=1;i<=n;i++) pow[i]=(pow[i-1]*2ll)%mod;
fac[0]=1;for(re int i=1;i<=n;i++) fac[i]=(fac[i-1]*(LL)i)%mod;
t[0]=1;t[1]=1;for(re int i=2;i<=n;i++) t[i]=(t[i-1]*pow[i-1])%mod;
ifac[n]=ksm(fac[n],mod-2);
for(re int i=n-1;i>=0;--i) ifac[i]=(ifac[i+1]*(LL)(i+1))%mod;
for(re int i=0;i<=n;i++) B[i]=t[i]*ifac[i]%mod;
for(re int i=1;i<=n;i++) A[i]=t[i]*ifac[i-1]%mod;
Inv(n+1,B,R);mul(n+1,A,R);
printf("%lld\n",A[n]*fac[n-1]%mod);
return 0;
}
【bzoj3456】 城市规划的更多相关文章
- [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)
城市规划 时间限制:40s 空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...
- BZOJ3456 城市规划 【多项式求ln】
题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无 ...
- BZOJ3456 城市规划(多项式求逆)
设f[i]为连通图的数量,g[i]为不连通图的数量,显然有f[i]=2i*(i-1)/2-g[i],g[i]通过枚举1所在连通块大小转移,有g[i]=Σf[j]*C(i-1,j-1)·2(i-j)*( ...
- BZOJ3456 城市规划 【多项式求逆】
题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_ ...
- BZOJ3456 城市规划 【分治NTT】
题目链接 BZOJ3456 题解 据说这题是多项式求逆 我太弱不会QAQ,只能\(O(nlog^2n)\)分治\(NTT\) 设\(f[i]\)表示\(i\)个节点的简单无向连通图的数量 考虑转移,直 ...
- BZOJ3456: 城市规划
Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或 ...
- BZOJ3456城市规划
题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通.为了 ...
- BZOJ3456 城市规划 【生成函数】【FFT】
题目分析: 容易想到生成函数的构造方法. 令g(n)表示n个点的无向图个数,f(n)表示n个点的无向连通图的个数.式子是显然的. 容易发现式子是卷积的形式,写出生成函数,然后多项式求逆后多项式乘法即可 ...
- 2019.01.03 bzoj3456: 城市规划(生成函数+多项式取对)
传送门 生成函数好题. 题意:求n个点的简单(无重边无自环)无向连通图数目 思路: 对简单无向图构造生成函数f(x)=∑n2Cn2xnn!f(x)=\sum_n2^{C_n^2}\frac{x^n}{ ...
- bzoj3456 城市规划 多项式求In
\(n\)个点的无向联通图的个数 打着好累啊 一定要封装一个板子 记\(C(x)\)为无向图个数的指数型生成函数,\(C(0) = 1\) 记\(G(x)\)为无向联通图个数的指数型生成函数,\(G( ...
随机推荐
- DataGridView 绑定数据方法
DataGridView控件用于显示来自多种外部数据源中的数据,用户可以在此控件添加行和列,并可以填充数据. 如要让DataGridView显示数据库中的数据,只需要将此控件绑定到挑用数据库的数据 ...
- DWF Toolkit on Microsoft Windows
If you are statically linking on Windows, you need these preprocessor defines: DWFTK_STATIC DWFTK_BU ...
- [模板]选择排序&&冒泡排序&&插入排序
#include<iostream> #include<cstdio> #include<bits/stdc++.h> using namespace std; v ...
- ASP.NET页面支持的指令
页面的处理指令 页面指令的处理用于配置执行该页面的运行时环境.在ASP.NET中,指令可以位于页面的任何位置,但良好且常见的习惯是将其置于文件的开始部分.除此,页面指令的名称是不区分大小写的,且指令的 ...
- golang rpc 简单范例
RPC(Remote Procedure Call Protocol)--远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议. 它的工作流程如下图: go ...
- Fill Table Row(it’s an IQ test question)
Here is a table include the 2 rows. And the cells in the first row have been filled with 0~4. Now yo ...
- 【Chromium】GPU进程启动流程
本篇文档以gpu进程的创建和启动为例,讲述chormium如何启动一个browser进程的子进程 PS:本文使用的chromium代码版本为71 前言 GPU进程的启动时机是由browser进程负责的 ...
- JavaWeb学习总结(四):Servlet开发(二)
一.ServletConfig讲解 1.1.配置Servlet初始化参数 在Servlet的配置文件web.xml中,可以使用一个或多个<init-param>标签为servlet配置一些 ...
- PowerDNS Authoritative Server 3.3 发布
PowerDNS Authoritative Server 3.3 发布,该版本改进了不同验证器的交互操作,修复了不少 bug. PowerDNS Authoritative Server (PDNS ...
- IT之路如何走得更远
作者:石头2075链接:http://www.jianshu.com/p/8c6417e16505著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 首先,你需要在合适的年纪进入了这 ...