树在计算机科学的许多领域中使用,包括操作系统,图形,数据库系统和计算机网络。树数据结构与他们的植物表亲有许多共同之处。树数据结构具有根,分支和叶。自然界中的树和计算机科学中的树之间的区别在于树数据结构的根在顶部,其叶在底部。

1 树的相关定义

节点:树的基本部分。它可以有一个名称,我们称之为“键”。节点也可以有附加信息。我们将这个附加信息称为“有效载荷”。虽然有效载荷信息不是许多树算法的核心,但在利用树的应用中通常是关键的。

:树的另一个基本部分。边连接两个节点以显示它们之间存在关系。每个节点(除根之外)都恰好从另一个节点的传入连接。每个节点可以具有多个输出边。

:树的根是树中唯一没有传入边的节点。

路径:路径是由边连接节点的有序列表。
子节点:具有来自相同传入边的节点 c 的集合称为该节点的子节点。
父节点:具有和它相同传入边的所连接的节点称为父节点。
兄弟节点:树中作为同一父节点的子节点的节点被称为兄弟节点。
子树:由父节点和该父节点的所有后代组成的一组节点和边。
叶节点:叶节点是没有子节点的节点。
高度:树的高度等于树中任何节点的最大层数。

定义一:树由一组节点和一组连接节点的边组成。树具有以下属性:

  • 树的一个节点被指定为根节点。
  • 除了根节点之外,每个节点 n 通过一个其他节点 p 的边连接,其中 p 是 n 的父节点。
  • 从根路径遍历到每个节点路径唯一。
  • 如果树中的每个节点最多有两个子节点,我们说该树是一个二叉树。下图展示了合适定义一的。

定义二:树是空的,或者由一个根节点和零个或多个子树组成,每个子树也是一棵树。每个子树的根节点通过边连接到父树的根节点。 下图 说明了树的这种递归定义。使用树的递归定义,我们知道 下图中的树至少有四个节点,因为表示一个子树的每个三角形必须有一个根节点。 它可能有比这更多的节点,但我们不知道,除非我们更深入树。



2 列表表示树结构

2.1 结构示意图

列表为我们提供了一个简单的递归数据结构,我们可以直接查看和检查。在列表树的列表中,我们将根节点的值存储为列表的第一个元素。列表的第二个元素本身将是一个表示左子树的列表。列表的第三个元素将是表示右子树的另一个列表。下图展示了一个简单的树和相应的列表实现。



myTree = ['a',   #root
['b', #left subtree
['d', [], []],
['e', [], []] ],
['c', #right subtree
['f', [], []],
[] ]
]

树的根是 myTree[0],根的左子树是 myTree[1],右子树是 myTree[2]

2.2 数的函数表达

下面我们用列表作为树的函数来形式化树数据结构的定义(并非定义一个二叉树类),帮助我们操纵一个标准列表。

def BinaryTree(r):
return [r, [], []]

BinaryTree 函数简单地构造一个具有根节点和两个子列表为空的列表。

2.3 插入子节点

要将左子树添加到树的根,我们需要在根列表的第二个位置插入一个新的列表。我们必须小心。如果列表已经在第二个位置有东西,我们需要跟踪它,并沿着树向下把它作为我们添加的列表的左子节点。下面代码展示了插图左子节点和右子节点的 python 代码。

def insertLeft(root,newBranch):
t = root.pop(1)
if len(t) > 1:
root.insert(1,[newBranch,t,[]])
else:
root.insert(1,[newBranch, [], []])
return root
def insertRight(root,newBranch):
t = root.pop(2)
if len(t) > 1:
root.insert(2,[newBranch,[],t])
else:
root.insert(2,[newBranch,[],[]])
return root

要插入一个左子节点,我们首先获得与当前左子节点对应的(可能为空的)列表。然后我们添加新的左子树,添加旧的左子数作为新子节点的左子节点。这允许我们在任何位置将新节点拼接到树中。

下面编写一些访问函数来获取和设置根节点的值,以及获取左或右子树,完成这组树形函数。

def getRootVal(root):
return root[0] def setRootVal(root,newVal):
root[0] = newVal def getLeftChild(root):
return root[1] def getRightChild(root):
return root[2]

3 节点表示

3.1 结构示意图

示意图第二种表示树的方法使用节点和引用。在这种情况下,我们将定义一个具有根值属性的类,以及左和右子树。 它的结构类似于下图:

3.2 构造类

这个表示重要的事情是 left和 right 的属性将成为对 BinaryTree 类的其他实例的引用。 例如,当我们在树中插入一个新的左子节点时,我们用 python 创建另一个 BinaryTree 实例如下,并在根节点中修改self.leftChild 来引用新树节点。

class BinaryTree:
def __init__(self,rootObj):
self.key = rootObj
self.leftChild = None
self.rightChild = None

构造函数希望获取某种对象存储在根中。 就像你可以在列表中存储任何你喜欢的对象一样,树的根对象可以是对任何对象的引用。 对于我们的先前示例,我们将存储节点的名称作为根值。使用节点和引用来表示 Figure 2 中的树,我们将创建 BinaryTree 类的六个实例。

3.2.1 添加节点

要向树中添加一个左子树,我们将创建一个新的二叉树对象,并设置根的左边属性来引用这个新对象。 代码如下:

def insertLeft(self,newNode):
if self.leftChild == None:
self.leftChild = BinaryTree(newNode)
else:
t = BinaryTree(newNode)
t.leftChild = self.leftChild
self.leftChild = t

我们必须考虑两种插入情况。 第一种情况的特征没有现有左孩子的节点。当没有左子代时,只需向树中添加一个节点。 第二种情况的特征在于具有现有左子代的节点。在第二种情况下,我们插入一个节点并将现有的子节点放到树中的下一个层。第二种情况由 Listing 5 第 4 行的 else 语句处理。同理,在根和现有的右子代之间插入节点。

def insertRight(self,newNode):
if self.rightChild == None:
self.rightChild = BinaryTree(newNode)
else:
t = BinaryTree(newNode)
t.rightChild = self.rightChild
self.rightChild = t

3.2.2 获取左右子代和根植

def getRightChild(self):
return self.rightChild def getLeftChild(self):
return self.leftChild def setRootVal(self,obj):
self.key = obj def getRootVal(self):
return self.key

3 完整的二叉树结构

使用节点 a 作为根的简单树,并将节点 b 和 c 添加为子节点。下面代码创建树并查看存储在 key,left 和 right 中的一些值。

class BinaryTree:
def __init__(self,rootObj):
self.key = rootObj
self.leftChild = None
self.rightChild = None def insertLeft(self,newNode):
if self.leftChild == None:
self.leftChild = BinaryTree(newNode)
else:
t = BinaryTree(newNode)
t.leftChild = self.leftChild
self.leftChild = t def insertRight(self,newNode):
if self.rightChild == None:
self.rightChild = BinaryTree(newNode)
else:
t = BinaryTree(newNode)
t.rightChild = self.rightChild
self.rightChild = t def getRightChild(self):
return self.rightChild def getLeftChild(self):
return self.leftChild def setRootVal(self,obj):
self.key = obj def getRootVal(self):
return self.key r = BinaryTree('a')
print(r.getRootVal())
print(r.getLeftChild())
r.insertLeft('b')
print(r.getLeftChild())
print(r.getLeftChild().getRootVal())
r.insertRight('c')
print(r.getRightChild())
print(r.getRightChild().getRootVal())
r.getRightChild().setRootVal('hello')
print(r.getRightChild().getRootVal())

参考资料:《problem-solving-with-algorithms-and-data-structure-using-python》 
http://www.pythonworks.org/pythonds

python实现树结构的更多相关文章

  1. python 实现树结构

    简述: 研究  MCTS 过程中, 需要用到树结构.  baidu  google 了一番, 找不到自己能满足自己的库或代码参考,只好再造个轮子出来 我造的树用来下五子棋 和 围棋用的,   有其它不 ...

  2. python 实现树结构的打印

    class TreeNode: def __init__(self,value): self.children = [] self.value = value def add_child(self,* ...

  3. 一行python代码实现树结构

    树结构是一种抽象数据类型,在计算机科学领域有着非常广泛的应用.一颗树可以简单的表示为根, 左子树, 右子树. 而左子树和右子树又可以有自己的子树.这似乎是一种比较复杂的数据结构,那么真的能像我们在标题 ...

  4. 用python脚本通过excel生成文件夹树结构

    大概这样写标题是对的吧... 目标: 通过excel目录结构文档生成文件夹树结构. 也就是: 通过下面的excel

  5. Python 文件复制&按目录树结构拷贝&批量删除目录及其子目录下的文件

    文件复制&按目录树结构拷贝&批量删除目录及其子目录下的文件 by:授客 QQ:1033553122 测试环境: Python版本:Python 3.3.2 Win7 64 代码实践 # ...

  6. python 实现服务树结构化

    1.  所有服务树数据 tree_list = [{'id': 1, 'pid': 0, 'name': '1211', 'path': '1211', 'leaf': 0, 'type': 0}, ...

  7. 【Machine Learning】决策树案例:基于python的商品购买能力预测系统

    决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...

  8. Python多线程爬虫爬取电影天堂资源

    最近花些时间学习了一下Python,并写了一个多线程的爬虫程序来获取电影天堂上资源的迅雷下载地址,代码已经上传到GitHub上了,需要的同学可以自行下载.刚开始学习python希望可以获得宝贵的意见. ...

  9. PYTHON解析XML的多种方式效率对比实测

    在最初学习PYTHON的时候,只知道有DOM和SAX两种解析方法,但是其效率都不够理想,由于需要处理的文件数量太大,这两种方式耗时太高无法接受. 在网络搜索后发现,目前应用比较广泛,且效率相对较高的E ...

随机推荐

  1. Django REST framework 之 API认证

    RESTful API 认证 和 Web 应用不同,RESTful APIs 通常是无状态的, 也就意味着不应使用 sessions 或 cookies, 因此每个请求应附带某种授权凭证,因为用户授权 ...

  2. loadrunner11的移动端性能测试之场景设计

    测试步骤之场景设计(Controller) 进入手工场景 准备好脚本后就可以进行场景设计和执行场景了,从VuGen中进入,见下图: 进入后第一个为目标场景,选择第二个更灵活的手工场景,我的目标人数20 ...

  3. ubuntu16.04(liunx) 离线安装 xgboost (anaconda3,anaconda2共存)

    服务器ubuntu 系统同时安装了 anaconda3,anaconda2 ,但服务器没有连接外网,所以 想在python3 环境下安装离线安装xgboost. 主要分2步: 0:进入py3环境  ( ...

  4. Python: 大型数组运算

    需要在大数据集(比如数组或网格) 上面执行计算,涉及到数组的重量级运算操作,可以使用NumPy 库. 下面是一个简单的小例子,展示标准列表对象和NumPy 数组对象之间的差别 >>> ...

  5. Python:导入numpy报错 No module named numpy

    Numpy是python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比python自身的嵌套列表结构要高效的多.但是在使用numpy时可能会出错(如上图). 解决办法:下载安装对应版本 ...

  6. 文件名含中文的JavaWeb文件下载

    在javaweb项目中实现文件下载,当文件名中包含中文文字时,需要进行如下的处理,才能在浏览器端正常显示中文文件名: response.setContentType("octets/stre ...

  7. UI自动化测试框架之Selenium关键字驱动

    一.原理及特点 1. 关键字驱动测试是数据驱动测试的一种改进类型 2. 主要关键字包括三类:被操作对象(Item).操作(Operation)和值(value),用面向对象形式可将其表现为Item.O ...

  8. 初识CGI

    CGI Web 服务器只能生成静态内容,而用户请求动态内容时,Web服务器只能借助一些应用程序来实现.CGI时一套标准,它规定了Web服务器和应用程序之间的交互方式. 静态内容与动态内容 要想理解什么 ...

  9. git如何自动打补丁

    答:git am --reject jello.patch  (如果打补丁失败,会自动生成rej文件)

  10. HBuilder 获取通讯录

    代码: var content=""; function getCallLog() { try{ plus.contacts.getAddressBook(plus.contact ...