题目描述

一棵n个点的树,每个点的初始权值为1。对于这棵树有q个操作,每个操作为以下四种操作之一:
+ u v c:将u到v的路径上的点的权值都加上自然数c;
- u1 v1 u2 v2:将树中原有的边(u1,v1)删除,加入一条新边(u2,v2),保证操作完之后仍然是一棵树;
* u v c:将u到v的路径上的点的权值都乘上自然数c;
/ u v:询问u到v的路径上的点的权值和,求出答案对于51061的余数。

输入

第一行两个整数n,q
接下来n-1行每行两个正整数u,v,描述这棵树
接下来q行,每行描述一个操作

输出

对于每个/对应的答案输出一行

样例输入

3 2
1 2
2 3
* 1 3 4
/ 1 1

样例输出

4


题解

带点权的LCT

需要注意的是3标记的处理:先乘后加,同时乘标记,与翻转互不影响。

这题的坑点在于int会WA,long long会TLE,必须用unsigned int。

#include <cstdio>
#include <algorithm>
#define N 100010
#define MOD 51061
#define lson c[0][x]
#define rson c[1][x]
using namespace std;
int fa[N] , c[2][N] , si[N] , rev[N];
unsigned w[N] , sum[N] , add[N] , mul[N];
char str[5];
inline int read()
{
int ret = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') ret = (ret << 3) + (ret << 1) + ch - '0' , ch = getchar();
return ret;
}
void pushup(int x)
{
si[x] = si[lson] + si[rson] + 1;
sum[x] = (sum[lson] + sum[rson] + w[x]) % MOD;
}
void cal(int x , unsigned a , unsigned m , int r)
{
sum[x] = (sum[x] * m + si[x] * a) % MOD;
w[x] = (w[x] * m + a) % MOD;
mul[x] = (mul[x] * m) % MOD;
add[x] = (add[x] * m + a) % MOD;
if(r) swap(lson , rson) , rev[x] ^= 1;
}
void pushdown(int x)
{
cal(lson , add[x] , mul[x] , rev[x]);
cal(rson , add[x] , mul[x] , rev[x]);
add[x] = rev[x] = 0 , mul[x] = 1;
}
bool isroot(int x)
{
return c[0][fa[x]] != x && c[1][fa[x]] != x;
}
void update(int x)
{
if(!isroot(x)) update(fa[x]);
pushdown(x);
}
void rotate(int x)
{
int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
pushup(y) , pushup(x);
}
void splay(int x)
{
update(x);
while(!isroot(x))
{
int y = fa[x] , z = fa[y];
if(!isroot(y))
{
if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
int t = 0;
while(x) splay(x) , rson = t , pushup(x) , t = x , x = fa[x];
}
void makeroot(int x)
{
access(x) , splay(x);
swap(lson , rson) , rev[x] ^= 1;
}
void link(int x , int y)
{
makeroot(x) , fa[x] = y;
}
void cut(int x , int y)
{
makeroot(x) , access(y) , splay(y) , c[0][y] = fa[x] = 0 , pushup(y);
}
void split(int x , int y)
{
makeroot(y) , access(x) , splay(x);
}
int main()
{
int n , m , i , x , y;
unsigned z;
n = read() , m = read();
for(i = 1 ; i <= n ; i ++ ) si[i] = w[i] = sum[i] = mul[i] = 1;
for(i = 1 ; i < n ; i ++ ) x = read() , y = read() , link(x , y);
while(m -- )
{
scanf("%s" , str) , x = read() , y = read();
switch(str[0])
{
case '+': z = (unsigned)read() , split(x , y) , cal(x , z , 1 , 0); break;
case '-': cut(x , y) , x = read() , y = read() , link(x , y); break;
case '*': z = (unsigned)read() , split(x , y) , cal(x , 0 , z , 0); break;
default: split(x , y) , printf("%u\n" , sum[x]);
}
}
return 0;
}

【bzoj2631】tree LCT的更多相关文章

  1. 【bzoj2631】tree link-cut-tree

    2016-06-01 08:50:36 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2631 注意加和乘的标记下传问题. 还有就是split后 ...

  2. 【BZOJ2631】tree

    Description 一棵n个点的树.每一个点的初始权值为1. 对于这棵树有q个操作,每一个操作为下面四种操作之中的一个: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 ...

  3. 【BZOJ3282】Tree LCT

    1A爽,感觉又对指针重怀信心了呢= =,模板题,注意单点修改时splay就好,其实按吾本意是没写的也A了,不过应该加上能更好维护平衡性. ..还是得加上好= = #include <iostre ...

  4. 【BZOJ】【2631】Tree

    LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...

  5. 【Luogu1501】Tree(Link-Cut Tree)

    [Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...

  6. 【BZOJ3282】Tree (Link-Cut Tree)

    [BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...

  7. 【POJ3237】Tree 树链剖分+线段树

    [POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...

  8. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

  9. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

随机推荐

  1. jstl的<c:set 的问题

    在使用jstl提供的set标签对javabean进行处理的时候发现直接打bean的名字会错 <jsp:useBean id="kkk" class="com.log ...

  2. Jmeter的简单介绍

    Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试,它最初被设计用于Web应用测 试但后来扩展到其他测试领域. 它可以用于测试静态和动态资源例如静态文件 ...

  3. javascript--淘宝页面的放大镜效果

    放大镜效果需求: 鼠标放入原图中,会出现一个黄色的遮盖层和一个放大的图片,鼠标移动时候,遮盖层会跟着鼠标一起移动,同时放大的图片会跟着一起移动. 实现过程: 1.鼠标移入,遮盖层和大图片显示 2.鼠标 ...

  4. 微信中h5页面用window.history.go(-1)返回上一页页面不会重新加载问题

    问题描述: 在实际开发中遇到这样一个问题,业务需求涉及到返回上一页问题,第一时间想到了window.history.go(-1)方法,这样做本身没有任何问题,但是在微信中,安卓手机还好返回上一页页面会 ...

  5. 日志管理——rsyslog

    官方文档(必看) http://www.rsyslog.com/doc/v8-stable/ 简介 rsyslog是linux自带日志管理工具,分为客户端\服务端,包含日志收集\过滤\分析\转储. 数 ...

  6. 解决Pycharm无法使用已经安装Selenium的问题

    重要:参考资料 当前版本 python版本:2.7 pycharm: 2017 原来本机是已经安装了2.7和selenium,新安装了一个pycharm的ide,于是selenium总是安装报错.At ...

  7. Linux中的目录功能(Red Hat 7)

    目录的基本功能: /bin:存放普通用户使用的命令 /sbin:存放管理员可以执行的命令 /home:存放普通的家目录 如张三家目录为/home/zhangsan /root:管理员的家目录 /etc ...

  8. R语言绘图:时间序列分析

    ggplot2绘制 arima诊断图 library(ggfortify) autoplot(acf(gold[,2], plot = FALSE)) ggtsdiag(auto.arima(gold ...

  9. 一起来学习Shell脚本

    Shell脚本 Shell脚本(shell script),是一种为shell编写的脚本程序. 大家所说的shell通常都是指的shell脚本,但其实shell与shell脚本是两个不同的概念.由于习 ...

  10. Uber CEO博鳌论坛采访:看好中国市场共享经济的发展模式

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...