题解:

官方题解太简略了orz

具体实现的方式其实有很多

问题就在于确定A[j]以后,如何找符合条件的A[i]

这里其实就是要提前预处理好

我是倒序插入点的,所以要沿着A[k]爬树,找符合的A[i]

如果发现A[i]与A[k]的第p位不同,比如A[k]位1,A[i]为0,那么所有的在i右边的第p位为0的数就都可以充当A[j]

所以实际上就需要求出有多少点对(i, j),满足这个条件。

不妨用可持久化的思想考虑这个过程

倒序插入A[i]时,我们就能统计出来A[i]的第p位为0(或者为1)时,所有在i右边的第p位为0(或者为1)的数有多少个

但是,问题在于我们需要删除结点

这个过程就要倒着想

如果删除A[i]

1、对于删除的那条字典树的链,链上每个点减少的贡献为 “那个结点的子树大小”

2、对于非链上的点,如果这个点和A[i]相应的第p位相同,那么它减少的贡献也是“这个结点的子树大小”

但注意,1情况对应的子树大小实际上是要减1的,因为被删除了一个结点。

我们用一个数组记录第p位为0或1时删除了几次,就可以处理第二种情况

但是第一种情况是比较特殊的,所以我们对每个结点都记录一下它上次被删除是哪一次

这样就可以做了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <cstdlib>
using namespace std;
const int maxn = 5e5 + ;
typedef long long LL;
struct Node{
Node* ch[];
LL num, ans, Mv;
}pool[maxn*], *null;
int tot, a[maxn], tt = ;
LL Minus[][], Plus[][];
inline Node* newnode(){
Node* x = &pool[tot++];
x->ch[] = x->ch[] = null;
x->num = x->ans = x->Mv = ;
return x;
}
void pre(){
null = newnode();
null->ch[] = null->ch[] = null;
null->num = ;
}
inline void Insert(Node* root, int x){
Node* u = root;
for(int i = ; i >= ; i--){
int c = (x&(<<i)) ? : ;
if(u->ch[c] == null){
u->ch[c] = newnode();
}
u->num++;
u->ch[c]->ans += Plus[i][c];
Plus[i][c]++;
u = u->ch[c];
}
u->num++;
} inline void Erase(Node* root, int x){
Node* u = root;
for(int i = ; i >= ; i--){
int c = (x&(<<i)) ? : ;
u->num--;
Minus[i][c]++;
u->ch[c]->ans -= (Minus[i][c] - u->ch[c]->Mv - )*u->ch[c]->num;
u->ch[c]->ans -= u->ch[c]->num - ;
u->ch[c]->Mv = Minus[i][c];
u = u->ch[c];
}
u->num--;
} inline LL Find(Node* root, int x){
LL ans = ;
Node* u = root;
for(int i = ; i >= ; i--){
int c = (x&(<<i)) ? : ;
LL v = u->ch[c^]->Mv;
LL rnum = u->ch[c^]->ans - (Minus[i][c^]-v)*u->ch[c^]->num;
ans += rnum;
u = u->ch[c];
}
return ans;
} int main()
{
int T; cin>>T;
for(; T; T--){
int n; cin>>n;
LL ans = ;
tot = ; pre();
Node* root = newnode();
memset(Minus, , sizeof(Minus));
memset(Plus, , sizeof(Plus));
for(int i = ; i <= n; i++) scanf("%d", &a[i]);
for(int i = n-; i >= ; i--) Insert(root, a[i]);
for(int i = n; i >= ; i--){
ans += Find(root, a[i]);
Erase(root, a[i-]);
}
cout<<ans<<endl;
}
}

2017 Multi-University Training Contest - Team 3 Kanade's trio(字典树+组合数学)的更多相关文章

  1. 2017 Multi-University Training Contest - Team 3 Kanade's sum hd6058

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6058 题目: Kanade's sum Time Limit: 4000/2000 MS (J ...

  2. hdu6059 Kanade's trio 字典树+容斥

    转自:http://blog.csdn.net/dormousenone/article/details/76570172 /** 题目:hdu6059 Kanade's trio 链接:http:/ ...

  3. 2017 Multi-University Training Contest - Team 3 RXD and dividing(树)

    题解: 其实贪心地算就可以了 一个最优的分配就是每条边权贡献的值为min(k, sz[x]),sz[x]是指子树的大小 然后最后加起来就是答案. #include <iostream> # ...

  4. 2017 Wuhan University Programming Contest (Online Round) D. Events,线段树区间更新+最值查询!

    D. Events 线段树区间更新查询区间历史最小值,看似很简单的题意写了两天才写出来. 题意:n个数,Q次操作,每次操作对一个区间[l,r]的数同时加上C,然后输出这段区间的历史最小值. 思路:在线 ...

  5. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  6. 2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】

    Dying Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  7. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  8. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  9. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

随机推荐

  1. HTML自定义Checkbox框背景色

    input[type=checkbox]{ margin-right:5px; width:13px; height:13px; }input[type=checkbox]:after { width ...

  2. Hadoop(23)-Yarn资源调度器

    Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序 1. Yarn工作机制 机制详解 第1 ...

  3. 我的机器学习之路--anaconda环境搭载

    网上许多教程比较晦涩难懂,本教程按照笔者(新手)自己的视角记录,希望给大家一些帮助 1.安装anaconda 目前比较推荐的机器学习环境为anaconda. Anaconda指的是一个开源的Pytho ...

  4. python-time模块、sys模块、os模块以及大量实例

    模块 通俗的说模块就把一个已经写好的带有可使用的函数的文件,通过文件名进行导入,然后调用里面的函数等来完成所需功能,模块封装了你需要实现功能的代码,使用者只需调用即可,简化代码量,缩短编程时间. ti ...

  5. Kuernetes-设计架构(二)

    Kubernetes设计架构 Kubernetes集群包含有节点代理kubelet和Master组件(APIs,scheduler.etc),一切都基于分布式的存储系统.Kubernetes架构图: ...

  6. Codeforces 845 C Two TVs

    参考:https://blog.csdn.net/xjh_shin/article/details/77491693 #include <iostream> #include <cs ...

  7. 永无BUG 注释

    /** *                   _ooOoo_ *                  o8888888o *                  88" . "88 ...

  8. 3155: Preprefix sum

    3155: Preprefix sum https://www.lydsy.com/JudgeOnline/problem.php?id=3155 分析: 区间修改,区间查询,线段树就好了. 然后,这 ...

  9. Linux下的命令行

    一.文件传输(两种方式) 1. 使用CRT传输 1. 一定要修改编码为UTF-8类型 1. 按住alt + p 切换成传输文件的窗口,然后拖拽文件进来即可 2. 使用类似xftp这种软件传输 这种软件 ...

  10. php+Mysql 页面登录代码

    登录界面设置: <?php/** * Created by xx. * User: msi * Date: 2017/10/26 * Time: 18:12 *///session每次用之前都要 ...