【题解】AHOI2009中国象棋
还记得第一次看见这题的时候好像还是联赛前后的事了,那时感觉这题好强……其实现在看来蛮简单的,分类讨论一下即可。题意非常的简单:每一行,每一列都不能超过两个棋子。考虑我们的dp,如果一行一行转移的话行上不能超过两个棋子是很好满足的,就看列上如何满足了。所以状态自然而然的设置为 \(f[i][j][k]\),分别代表枚举到第 \(i\) 行,之前的列上有 \(j\) 列上有两个棋子,\(k\)列上有一个棋子时的方案数。
然后分情况转移乘以组合数即可。虽然简单,但感觉还是有所启发:做组合数类型的DP,应该观察到对后续状态真正产生影响的要素,只需保留这几样作为状态即可,其余的任选都有组合数来体现(其实一般的DP也是这样吧(`・ω・´))代码里面有小小注释……个人喜欢打英文的(主要是懒得切输入法)。
#include <bits/stdc++.h>
using namespace std;
#define maxn 200
#define int long long
#define mod 9999973
int n, m, ans, f[maxn][maxn][maxn];
int C[maxn][]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void up(int &x, int y) { x = (x + y % mod) % mod; } void init()
{
for(int i = ; i <= m; i ++) C[i][] = ;
for(int i = ; i <= m; i ++)
for(int j = ; j <= ; j ++)
if(j > i) C[i][j] = ;
else C[i][j] = C[i - ][j - ] + C[i - ][j];
} signed main()
{
n = read(), m = read();
f[][][] = ; init();
for(int i = ; i < n; i ++)
for(int j = ; j <= m; j ++)
for(int k = ; k <= m - j; k ++)
{
if(!f[i][j][k]) continue;
up(f[i + ][j][k], f[i][j][k]); //
int t = m - j - k, S = f[i][j][k];
// place a chess
if(t) up(f[i + ][j][k + ], S * t); // placed on a row of 0;
if(k) up(f[i + ][j + ][k - ], S * k); // placed on a row of 1;
// place two chess
if(t >= ) up(f[i + ][j][k + ], S * C[t][]); //two on zero;
if(k && t) up(f[i + ][j + ][k], S * t * k); // one on zero, one on one;
if(k >= ) up(f[i + ][j + ][k - ], S * C[k][]); // two on one;
}
for(int j = ; j <= m; j ++)
for(int k = ; k <= m - j; k ++)
up(ans, f[n][j][k]);
printf("%lld\n", ans);
return ;
}
【题解】AHOI2009中国象棋的更多相关文章
- [洛谷P2051] [AHOI2009]中国象棋
洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...
- 洛谷 P2051 [AHOI2009]中国象棋 解题报告
P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...
- luogu 2051 [AHOI2009]中国象棋
luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...
- 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP
P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...
- Luogu P2051 [AHOI2009]中国象棋(dp)
P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...
- [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)
题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...
- BZOJ1801:[AHOI2009]中国象棋——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1801 https://www.luogu.org/problemnew/show/P2051 这次小 ...
- P2051 [AHOI2009]中国象棋
题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...
- [P2051 [AHOI2009]中国象棋] DP
https://www.luogu.org/problemnew/show/P2051 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一 ...
- LG_2051_[AHOI2009]中国象棋
题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...
随机推荐
- 使用公共的存储过程实现repeater的分页
当一个项目repeater分页多的时候使用公共的存储过程实现分页,是不错的选择 ALTER PROC [dbo].[P_Common_proc] -- 通用分页存储过程 @TableName varc ...
- Apache Maven(四):依赖
依赖管理是Maven的特性之一,它是用户最为熟悉的特性之一,也是Maven擅长的领域之一.管理单个项目的依赖并没有太大困难,但是当您开始处理由数十或数百个模块组成的多模块项目和应用程序时,Maven可 ...
- Ubuntu 16.04 swoole扩展安装注意!!!
前言:目前很多项目估计常常会用到swoole扩展,如个人使用Ubuntu虚拟机安装扩展,这里总结一下遇到的问题: 一.先保证服务器时间同步当前地区时间,如北京时间: 1.设定时区 如:设定时区:dpk ...
- python3 练习题100例 (二十六)回文数判断
题目内容: 给一个5位数,判断它是不是回文数,是则输出yes,不是则输出no. 例如12321是回文数,它的个位与万位相同,十位与千位相同. 输入格式: 共一行,为一个5位数. 输出格式: 共一行,y ...
- 【Leetcode】709. To Lower Case
To Lower Case Description Implement function ToLowerCase() that has a string parameter str, and retu ...
- JSON初体验(二):Gson解析
今天,我们来介绍一下Gson的jar包的用法. JSON解析之Gson 特点:编码简介,谷歌官方推荐 数据之间的转换: 1.将json格式的字符串{}转换成为java对象 API: <T> ...
- 【MySql】mysql 慢日志查询工具之mysqldumpslow
当使用--log-slow-queries[=file_name]选项启动时,mysqld写一个包含所有执行时间超过long_query_time秒的SQL语句的日志文件.获得初使表锁定的时间不算 ...
- LeetCode:26. Remove Duplicates from Sorted Array(Easy)
1. 原题链接 https://leetcode.com/problems/remove-duplicates-from-sorted-array/description/ 2. 题目要求 给定一个已 ...
- PIC32MZ 通过USB在线升级 -- USB CDC bootloader
了解bootloader 的实现,请加QQ: 1273623966 (验证填 bootloader):欢迎咨询或定制bootloader:我的博客主页www.cnblogs.com/geekygeek ...
- Linux-Shell脚本编程-学习-3-Shell编程-shell脚本基本格式
前面两篇文章基本介绍了一部分linux下的基本命令,后面还需要大家自行了解下linux的文件系统的磁盘管理部分,这里就不在写了. 什么是shell编程,我也解释不来,什么是shell脚本了,我理解就是 ...