还记得第一次看见这题的时候好像还是联赛前后的事了,那时感觉这题好强……其实现在看来蛮简单的,分类讨论一下即可。题意非常的简单:每一行,每一列都不能超过两个棋子。考虑我们的dp,如果一行一行转移的话行上不能超过两个棋子是很好满足的,就看列上如何满足了。所以状态自然而然的设置为 \(f[i][j][k]\),分别代表枚举到第 \(i\) 行,之前的列上有 \(j\) 列上有两个棋子,\(k\)列上有一个棋子时的方案数。

  然后分情况转移乘以组合数即可。虽然简单,但感觉还是有所启发:做组合数类型的DP,应该观察到对后续状态真正产生影响的要素,只需保留这几样作为状态即可,其余的任选都有组合数来体现(其实一般的DP也是这样吧(`・ω・´))代码里面有小小注释……个人喜欢打英文的(主要是懒得切输入法)。

#include <bits/stdc++.h>
using namespace std;
#define maxn 200
#define int long long
#define mod 9999973
int n, m, ans, f[maxn][maxn][maxn];
int C[maxn][]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void up(int &x, int y) { x = (x + y % mod) % mod; } void init()
{
for(int i = ; i <= m; i ++) C[i][] = ;
for(int i = ; i <= m; i ++)
for(int j = ; j <= ; j ++)
if(j > i) C[i][j] = ;
else C[i][j] = C[i - ][j - ] + C[i - ][j];
} signed main()
{
n = read(), m = read();
f[][][] = ; init();
for(int i = ; i < n; i ++)
for(int j = ; j <= m; j ++)
for(int k = ; k <= m - j; k ++)
{
if(!f[i][j][k]) continue;
up(f[i + ][j][k], f[i][j][k]); //
int t = m - j - k, S = f[i][j][k];
// place a chess
if(t) up(f[i + ][j][k + ], S * t); // placed on a row of 0;
if(k) up(f[i + ][j + ][k - ], S * k); // placed on a row of 1;
// place two chess
if(t >= ) up(f[i + ][j][k + ], S * C[t][]); //two on zero;
if(k && t) up(f[i + ][j + ][k], S * t * k); // one on zero, one on one;
if(k >= ) up(f[i + ][j + ][k - ], S * C[k][]); // two on one;
}
for(int j = ; j <= m; j ++)
for(int k = ; k <= m - j; k ++)
up(ans, f[n][j][k]);
printf("%lld\n", ans);
return ;
}

【题解】AHOI2009中国象棋的更多相关文章

  1. [洛谷P2051] [AHOI2009]中国象棋

    洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...

  2. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  3. luogu 2051 [AHOI2009]中国象棋

    luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...

  4. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  5. Luogu P2051 [AHOI2009]中国象棋(dp)

    P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...

  6. [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...

  7. BZOJ1801:[AHOI2009]中国象棋——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801 https://www.luogu.org/problemnew/show/P2051 这次小 ...

  8. P2051 [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  9. [P2051 [AHOI2009]中国象棋] DP

    https://www.luogu.org/problemnew/show/P2051 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一 ...

  10. LG_2051_[AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

随机推荐

  1. vue 中父子组件之间的交互

    1,最直接的也是最简单的方法是利用props来数据传值. 子组件定义如下: props: { iconClass: { type: String, required: true }, classNam ...

  2. MySQL建表

    -- 1.创建部门表dept 1 CREATE TABLE dept( 2 deptno INT PRIMARY KEY, 3 dname VARCHAR(20) UNIQUE NOT NULL, 4 ...

  3. 2.5 进程控制之wait函数

    一.绪论 一个进程在终止时会关闭所有文件描述符,释放在用户空间分配的内存,但它的PCB还保留着,内核在其中保存了一些信息:如果 是正常终止则保存着退出状态,如果是异常终止则保存着导致该进程终止的信号是 ...

  4. Python正则表达式-基础

    Python正则表达式-基础 本文转载自昔日暖阳,原文地址:http://www.osheep.cn/4806.html python使用正则,需要先引入re模块 import re 匹配符 单个字符 ...

  5. Python学习手册之Python异常和文件

    在上一篇文章中,我们介绍了 Python 的函数和模块,现在我们介绍 Python 中的异常和文件. 查看上一篇文章请点击:https://www.cnblogs.com/dustman/p/9963 ...

  6. Java学习笔记五:Java中常用的运算符

    Java中常用的运算符 运算符是一种“功能”符号,用以通知 Java 进行相关的运算.譬如,我们需要将变量 score 的值设置为 20 ,这时候就需要一个“=”,告诉程序需要进行赋值操作. Java ...

  7. Linux编程之Epoll高并发

    网络上所有资料都说epoll是高并发.单线程.IO重叠服用的首选架构,比select和poll性能都要好,特别是在有大量不活跃连接的情况下.具体原理就不阐述了,下面说说使用. 具有有三个函数: #in ...

  8. Linux mysql启动与关闭

    service mysql stop service mysqld start

  9. C语言RL78 serial bootloader和C#语言bootloader PC端串口通信程序

    了解更多关于bootloader 的C语言实现,请加我QQ: 1273623966 (验证信息请填 bootloader),欢迎咨询或定制bootloader(在线升级程序). 前段时间完成的hype ...

  10. kill -9 vs killall

    kill Linux中的kill命令用来终止指定的进程(terminate a process)的运行,是Linux下进程管理的常用命令.通常,终止一个前台进程可以使用Ctrl+C键,但是,对于一个后 ...