【BZOJ1101】Zap [莫比乌斯反演]
Zap
Time Limit: 10 Sec Memory Limit: 162 MB
[Submit][Status][Discuss]
Description
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。
Input
第一行包含一个正整数n,表示一共有n组询问。接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。
Output
输出一个正整数,表示满足条件的整数对数。
Sample Input
4 5 2
6 4 3
Sample Output
2
HINT
1<=n<= 50000, 1<=d<=a,b<=50000
Solution
我们运用莫比乌斯反演,然后推一下式子得到:

我们依旧对于下界分块求解即可。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ; int T;
int n,m,k;
bool isp[ONE];
int prime[ONE],p_num;
int miu[ONE],sum_miu[ONE];
s64 Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getmiu(int MaxN)
{
miu[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
prime[++p_num] = i, miu[i] = -;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i%prime[j] == )
{
miu[i * prime[j]] = ;
break;
}
miu[i * prime[j]] = -miu[i];
}
miu[i] += miu[i-];
}
} void Solve()
{
n=get(); m=get(); k=get();
if(n > m) swap(n,m); int N = n/k, M = m/k; Ans = ;
for(int i=,j=; i<=N; i=j+)
{
j = min(N/(N/i), M/(M/i));
Ans += (s64)(N/i) * (M/i) * (miu[j] - miu[i-]);
} printf("%lld\n",Ans);
} int main()
{
Getmiu(ONE-);
T=get();
while(T--)
Solve();
}
【BZOJ1101】Zap [莫比乌斯反演]的更多相关文章
- 【题解】Zap(莫比乌斯反演)
[题解]Zap(莫比乌斯反演) 裸题... 直接化吧 [P3455 POI2007]ZAP-Queries 所有除法默认向下取整 \[ \Sigma_{i=1}^x\Sigma_{j=1}^y[(i, ...
- BZOJ1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2951 Solved: 1293[Submit][Status ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- 1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...
- bzoj 1101 Zap —— 莫比乌斯反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...
- BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...
- BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )
求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...
- BZOJ 1101 Zap(莫比乌斯反演)
http://www.lydsy.com/JudgeOnline/problem.php?id=1101 给定a,b,d,求有多少gcd(x,y)==d(1<=x<=a&& ...
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
随机推荐
- luogu4172 [WC2006]水管局长
就是用 lct 维护最小生成树 ref #include <algorithm> #include <iostream> #include <cstdio> #in ...
- 「日常训练」 不容易系列之(3)—— LELE的RPG难题 (HDU 2045)
题目简述 有排成一行的n" role="presentation">nn个方格,用红(Red).粉(Pink).绿(Green)三色涂每个格子,每格涂一色,要求任何 ...
- BZOJ 1968 [Ahoi2005]COMMON 约数研究:数学【思维题】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1968 题意: 设f(x) = x约数的个数.如:12的约数有1,2,3,4,6,12,所以 ...
- tensorflow nmt基本配置(tf-1.4)
随着tensorflow的不断更新,直接按照nmt的教程搭建nmt环境会报错的...因此,需要一些不太好的办法来避免更多的问题出现.tensorflow看来在ubuntu和debian中运行是没有问题 ...
- 九度OJ--1165(C++)
#include <iostream>#include <string>#include <vector> using namespace std; int mai ...
- 软件工程项目组Z.XML会议记录 2013/10/22
软件工程项目组Z.XML会议记录 [例会时间]2013年10月22日星期二21:00-22:30 [例会形式]小组讨论 [例会地点]三号公寓楼会客厅 [例会主持]李孟 [会议记录]周敏轩 会议整体流程 ...
- [问题解决]Python locale error: unsupported locale setting
原文来源:https://stackoverflow.com/questions/14547631/python-locale-error-unsupported-locale-setting 安装f ...
- 剑指offer:斐波那契数列
目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:斐波那契数列 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n< ...
- Thread.currentThread().getContextClassLoader().loadClass(className)和Class.forName(className)的区别
一.正文: 有去看开源框架的童鞋,应该会经常看到如下代码:Thread.currentThread().getContextClassLoader().loadClass(className),那这个 ...
- servletContex.getRealPath 获取的是拼接后的地址 是虚假的
servletContex.getRealPath 获取的是拼接后的地址 是虚假的