【BZOJ1101】Zap [莫比乌斯反演]
Zap
Time Limit: 10 Sec Memory Limit: 162 MB
[Submit][Status][Discuss]
Description
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。
Input
第一行包含一个正整数n,表示一共有n组询问。接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。
Output
输出一个正整数,表示满足条件的整数对数。
Sample Input
4 5 2
6 4 3
Sample Output
2
HINT
1<=n<= 50000, 1<=d<=a,b<=50000
Solution
我们运用莫比乌斯反演,然后推一下式子得到:

我们依旧对于下界分块求解即可。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ; int T;
int n,m,k;
bool isp[ONE];
int prime[ONE],p_num;
int miu[ONE],sum_miu[ONE];
s64 Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getmiu(int MaxN)
{
miu[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
prime[++p_num] = i, miu[i] = -;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i%prime[j] == )
{
miu[i * prime[j]] = ;
break;
}
miu[i * prime[j]] = -miu[i];
}
miu[i] += miu[i-];
}
} void Solve()
{
n=get(); m=get(); k=get();
if(n > m) swap(n,m); int N = n/k, M = m/k; Ans = ;
for(int i=,j=; i<=N; i=j+)
{
j = min(N/(N/i), M/(M/i));
Ans += (s64)(N/i) * (M/i) * (miu[j] - miu[i-]);
} printf("%lld\n",Ans);
} int main()
{
Getmiu(ONE-);
T=get();
while(T--)
Solve();
}
【BZOJ1101】Zap [莫比乌斯反演]的更多相关文章
- 【题解】Zap(莫比乌斯反演)
[题解]Zap(莫比乌斯反演) 裸题... 直接化吧 [P3455 POI2007]ZAP-Queries 所有除法默认向下取整 \[ \Sigma_{i=1}^x\Sigma_{j=1}^y[(i, ...
- BZOJ1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2951 Solved: 1293[Submit][Status ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- 1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...
- bzoj 1101 Zap —— 莫比乌斯反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...
- BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...
- BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )
求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...
- BZOJ 1101 Zap(莫比乌斯反演)
http://www.lydsy.com/JudgeOnline/problem.php?id=1101 给定a,b,d,求有多少gcd(x,y)==d(1<=x<=a&& ...
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
随机推荐
- 三张照片解决--win10系统的edge浏览器设置为浏览器IE8,IE7,IE9---完美解决 费元星
主要思想: 第二种方法: 参考文档: 1.可以在系统盘的C:\Program Files\Internet Explorer中找到iexplore.exe,然后将其发送到桌 ...
- Jquery操作select选项集合!
Query获取Select选择的Text和Value: 1. $("#select_id").change(function(){//code...}); //为Select添加事 ...
- Hackerrank - The Grid Search
https://www.hackerrank.com/challenges/the-grid-search/forum 今天碰见这题,看见难度是Moderate,觉得应该能半小时内搞定. 读完题目发现 ...
- CDateTimeUI类源码分析
CDateTimeUI是duilib里选择日期的控件,继承于CLabelUI控件,用于记录已经选择的日期,选择控件则是调用win32的日期选择控件. CDateTimeUI包含两个类,一个是CDate ...
- Sql面试题之三(难度:简单| 含答案)
Sql面试题之三(难度:简单| 含答案) 答案: .SELECT B.name, B.Depart T.Content FROM B, T WHERE ( T.Content = '税法培训' and ...
- Elasticsearch中的DocValues
Elasticsearch最近一段时间非常火,以致于背后的公司都改名为Elastic了,因为Elasticsearch已经不仅限于搜索,反而更多的用在大数据分析场景,所以在公司品牌上开始“去Searc ...
- (原创)最小生成树之Prim(普里姆)算法+代码详解,最懂你的讲解
Prim算法 (哈欠)在创建最小生成树之前,让我们回忆一下什么是最小生成树.最小生成树即在一个待权值的图(即网结构)中用一个七拐八绕的折线串连起所有的点,最小嘛,顾名思义,要权值相加起来最小,你当然可 ...
- akka与slf4j导致jvm直接crash的诡异
流程很简单,创建actorSystem,通过actorSystem获取AkkaQueryServiceRetriever,进而通过传递path获得的Gateway进行通信. 之前在主项目里跑的很稳定, ...
- 使用锚点在HTML页面中快速移动
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- request对数据进行编码的 才是导致乱码问题之一
1.此时服务器端接收到客户端提交来的post请求 2.request.getParameter("name")方法开始从请求中解析数据 并使用默认的编码 格式进行编码(ISO-88 ...