动态规划:LCIS
先给出状态转移方程:
定义状态
F[i][j]表示以a串的前i个整数与b串的前j个整数且以b[j]为结尾构成的LCIS的长度
状态转移方程:
①F[i][j] = F[i-][j] (a[i] != b[j])
②F[i][j] = max(F[i-][k]+) ( <= k <= j- && b[j] > b[k])
这个可以优化到O(n^2)的时间复杂度,然后再滚动数组一下,空间复杂度就可以是O(n)的,这里直接给出最优实现策略
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=;
int n1,n2;
int a[maxn],b[maxn],f[maxn];
int main()
{
scanf("%d",&n1);
n2=n1;
for(int i=;i<=n1;i++) scanf("%d",&a[i]);
for(int j=;j<=n2;j++) scanf("%d",&b[j]);
int tmp;
for(int i=;i<=n1;i++)
{
tmp=;
for(int j=;j<=n2;j++)
{
if(a[i]>b[j]&&tmp<f[j]) tmp=f[j];
if(a[i]==b[j]) f[j]=tmp+;
}
}
tmp=;
for(int i=;i<=n2;i++)
if(tmp<f[i]) tmp=f[i];
printf("%d\n",tmp);
return ;
}
比SAM简单多了
动态规划:LCIS的更多相关文章
- [ACM_动态规划] UVA 12511 Virus [最长公共递增子序列 LCIS 动态规划]
Virus We have a log file, which is a sequence of recorded events. Naturally, the timestamps are s ...
- CF10D LCIS (动态规划)
题目链接 Solution 动态规划. 令 \(f_{i,j}\) 表示 \(a\) 数组前 \(i\) 个和 \(b\) 数组前 \(j\) 所得的最长的 LCIS . 转移很好想: \(a_i!= ...
- Codeforces Beta Round #10 D. LCIS 动态规划
D. LCIS 题目连接: http://www.codeforces.com/contest/10/problem/D Description This problem differs from o ...
- 动态规划——最长公共上升子序列LCIS
问题 给定两个序列A和B,序列的子序列是指按照索引逐渐增加的顺序,从原序列中取出若干个数形成的一个子集,若子序列的数值大小是逐渐递增的则为上升子序列,若A和B取出的两个子序列A1和B1是相同的,则A1 ...
- [tyvj-1071]LCIS 动态规划
LCIS模板 #include <cstdio> #include <cstring> #include <iostream> using namespace st ...
- LIS LCS n^2和nlogn解法 以及LCIS
首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)
HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...
- LCS,LIS,LCIS学习
for(int i = 1;i <= n;i++) { int dpmax = 0; for(int j = 1;j <= m;j++) { dp[i][j] = dp[i-1][j]; ...
随机推荐
- struts2官方 中文教程 系列七:消息资源文件
介绍 在本教程中,我们将探索使用Struts 2消息资源功能(也称为 resource bundles 资源绑定).消息资源提供了一种简单的方法,可以将文本放在一个视图页面中,通过应用程序,创建表单字 ...
- Java:详解内部类
可以将一个类的定义放在另一个类的定义内部,这就是内部类. 内部类是一个非常有用的特性但又比较难理解使用的特性(鄙人到现在都没有怎么使用过内部类,对内部类也只是略知一二). 第一次见面 内部类我们从外面 ...
- 通过py2exe打包python程序的过程中,解决的一系列问题
py2exe的使用方法参考<py2exe使用方法>. 注:程序可以在解释器中正常运行,一切问题都出在打包过程中. 问题1: 现象:RuntimeError: maximum recursi ...
- MyEclipse - 问题集 - 创建Maven项目,JDK版本默认是1.5
修改Maven的配置文件settings.xml,增加profile节点,如下所示: <profile> <id>jdk-1.8</id> <activati ...
- 『Golang』在Golang中使用json
由于要开发一个小型的web应用,而web应用大部分都会使用json作为数据传输的格式,所以有了这篇文章. 包引用 import ( "encoding/json" "gi ...
- Qt Charts实践
Qt Charts的横空出世标志着QWT,QCustomPlot .....时代的终结,让我们开始使用QtCharts吧 在Qt 5.7.0中已经集成了Qt Charts模块,需要在安装Qt的时候把C ...
- ContOS软件包安装【零】
选择是“Minimal”安装 ,最小化. 越简单,越不容易出错. 1.听一些老鸟分析,选择安装包时应该按最小化原则,即不需要的或者不确定是否需要的就不安装,这样可以最大程度上确保系统安全.(安 ...
- Nginx 配置 HTTPS自签名证书
工具: OpenSSL ssl的开源实现,几乎实现了市面上所有的加密 libcrypto: 通用加密库, 任何软件要实现加密功能 链接调用这个库 libssl: TLS/SSL 加密库 openssl ...
- 《机器学习实战》 in python3.x
机器学习实战这本书是在python2.x的环境下写的,而python3.x中好多函数和2.x中的名称或使用方法都不一样了,因此对原书中的内容需要校正,下面简单的记录一下学习过程中fix的部分 1.pr ...
- OpenPAI:大规模人工智能集群管理平台介绍及任务提交指南
产品渊源: 随着人工智能技术的快速发展,各种深度学习框架层出不穷,为了提高效率,更好地让人工智能快速落地,很多企业都很关注深度学习训练的平台化问题.例如,如何提升GPU等硬件资源的利用率?如何节省硬件 ...