POJ2369 Permutations(置换的周期)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 3039 | Accepted: 1639 |
Description
This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc.
What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(n) is a permutation then P(P(n)) is a permutation as well. In our example (believe us)
It is natural to denote this permutation by P2(n) = P(P(n)). In a general form the defenition is as follows: P(n) = P1(n), Pk(n) = P(Pk-1(n)). Among the permutations there is a very important one — that moves nothing:
It is clear that for every k the following relation is satisfied: (EN)k = EN. The following less trivial statement is correct (we won't prove it here, you may prove it yourself incidentally): Let P(n) be some permutation of an N elements set. Then there exists a natural number k, that Pk = EN. The least natural k such that Pk = EN is called an order of the permutation P.
The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."
Input
Output
Sample Input
5
4 1 5 2 3
Sample Output
6 置换的周期是轮换长度的最小公倍数 代码:
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MAXN 1005
long long lcm(long long a,long long b)
{
long long temp;
long long a0,b0;
a0=a;
b0=b;
while(b)
{
temp=b;
b=a%b;
a=temp;
}
return a0/a*b0;
}
int main()
{
int n;
int i,j;
long long p[MAXN];
long long g[MAXN];
int cnt;
long long l;
bool flag[MAXN];
memset(flag,false,sizeof(flag));
scanf("%d",&n);
for(i=;i<=n;i++)
scanf("%I64d",&p[i]);
cnt=;
for(i=;i<=n;i++)
{
if(flag[i])
continue;
g[cnt]=;
j=i;
while(p[j]!=i)
{
flag[j]=true;
j=p[j];
g[cnt]++;
}
cnt++;
}
l=g[];
for(i=;i<cnt;i++)
{
l=lcm(l,g[i]);
}
printf("%I64d\n",l);
return ;
}
POJ2369 Permutations(置换的周期)的更多相关文章
- 【UVA 11077】 Find the Permutations (置换+第一类斯特林数)
Find the Permutations Sorting is one of the most used operations in real life, where Computer Scienc ...
- UVA - 11077 Find the Permutations (置换)
Sorting is one of the most usedoperations in real life, where Computer Science comes into act. It is ...
- poj2369 Permutations ——置换群
link:http://poj.org/problem?id=2369 置换群,最简单的那种. 找所有数字循环节的最小公倍数. /* ID: zypz4571 LANG: C++ TASK: perm ...
- poj 2369 Permutations 置换
题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...
- poj 2369 Permutations (置换入门)
题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...
- POJ 2369 Permutations (置换的秩P^k = I)
题意 给定一个置换形式如,问经过几次置换可以变为恒等置换 思路 就是求k使得Pk = I. 我们知道一个置换可以表示为几个轮换的乘积,那么k就是所有轮换长度的最小公倍数. 把一个置换转换成轮换的方法也 ...
- UVA11077 Find the Permutations —— 置换、第一类斯特林数
题目链接:https://vjudge.net/problem/UVA-11077 题意: 问n的全排列中多有少个至少需要交换k次才能变成{1,2,3……n}. 题解: 1.根据过程的互逆性,可直接求 ...
- POJ2369 Permutations【置换群】
题目链接: http://poj.org/problem?id=2369 题目大意: 给定一个序列.问最少须要多少次置换才干变为 1.2.-.N 的有序序列.比方说给 定5个数的序列 4 1 5 2 ...
- POJ置换群入门[3/3]
POJ 3270 Cow Sorting 题意: 一个序列变为升序,操作为交换两个元素,代价为两元素之和,求最小代价 题解: 看了黑书... 首先循环因子分解 一个循环完成的最小代价要么是循环中最小元 ...
随机推荐
- 关于ZedGraph
http://www.codeproject.com/Articles/5431/A-flexible-charting-library-for-NET
- Java面试常见知识点总结(二)
11.构造方法(构造器): 构造方法是一种特殊的方法,具有以下特点. (1) 构造方法的方法名必须与类名相同. (2) 构造方法没有返回类型,也不能定义为void,在方法名前面不声明方法类 ...
- python shutil.copy()用法
shutil.copyfile(src, dst):复制文件内容(不包含元数据)从src到dst. DST必须是完整的目标文件名; 如果src和dst是同一文件,就会引发错误shutil.Error. ...
- 使用Nito.AsyncEx实现异步锁(转)
转载地址:http://www.cnblogs.com/1zhk/p/5269279.html Lock是常用的同步锁,但是我们无法在Lock的内部实现异步调用,比如我们无法使用await. 以下面的 ...
- 数据库连接池c3p0学习
这里只记录c3p0的数据源,不会涉及到其它方面和别的数据库连接池的对比 配置文件主要的实现方式有三种: 1.手写代码去加载一个配置文件 创建一个config.properties文件如下: drive ...
- Remove Duplicates from Sorted Array II
题目简述 Follow up for "Remove Duplicates": What if duplicates are allowed at most twice? For ...
- EF不能很好的支持DDD?估计是我们搞错了!
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:最近在ABP项目中尝试纯粹的DDD,然后遇到EF实现的Repository似乎不能很好 ...
- 远程debug调试java代码
远程debug调试java代码 日常环境和预发环境遇到问题时,可以用远程调试的方法本地打断点,在本地调试.生产环境由于网络隔离和系统稳定性考虑,不能进行远程代码调试. 整体过程是通过修改远程服务JAV ...
- Windows远程桌面打印机映射
计算机的打印机驱动能打印,需要满足两个条件,一个是有打印驱动本身,一个是要有连接好了的端口.这样,打印作业就会被打印驱动程序封装成一种打印机能识别的组织形式,然后通过打印端口发送给打印机,然后打印! ...
- Learn Git and GitHub without any code!
What is GitHub? GitHub is a code hosting platform for version control and collaboration.代码托管平台. repo ...