python之八大排序方法
一、插入排序
#-*- coding:utf-8 -*-
'''
描述
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。
是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),
而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中
'''
def insert_sort(lists):
count = len(lists)
for i in range(1, count):
key = lists[i]
j = i - 1
while j >= 0:
if lists[j] > key:
lists[j + 1] = lists[j]
lists[j] = key
j -= 1
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
insert_sort(lst)
for i in range(len(lst)):
print lst[i],
二、希尔排序
#-*- coding:utf8 -*-
'''
描述
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。
该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,
每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
'''
def shell_sort(lists):
count = len(lists)
step = 2
group = count / step
while group > 0:
for i in range(group):
j = i + group
while j < count:
k = j - group
key = lists[j]
while k >= 0:
if lists[k] > key:
lists[k + group] = lists[k]
lists[k] = key
k -= group
j += group
group /= step
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
shell_sort(lst)
for i in range(len(lst)):
print lst[i],
三、冒泡排序
#-*- coding:utf8 -*-
'''
描述
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
'''
def bubble_sort(lists):
count = len(lists)
for i in range(count):
for j in range(i + 1, count):
if lists[i] > lists[j]:
lists[i], lists[j] = lists[j], lists[i]
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
bubble_sort(lst)
for i in range(len(lst)):
print lst[i],
四、直接选择排序
#-*- coding:utf8 -*-
'''
描述
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;
以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
'''
def select_sort(lists):
count = len(lists)
for i in range(count):
min = i
for j in range(i + 1, count):
if lists[min] > lists[j]:
min = j
lists[min], lists[i] = lists[i], lists[min]
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
select_sort(lst)
for i in range(len(lst)):
print lst[i],
五、快速排序
#-*- coding:utf8 -*-
'''
描述(利用递归,效率较低,较难理解)
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,
然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
'''
def quick_sort(lists, left, right):
if left >= right:
return lists
key = lists[left]
low = left
high = right
while left < right:
while left < right and lists[right] >= key:
right -= 1
lists[left] = lists[right]
while left < right and lists[left] <= key:
left += 1
lists[right] = lists[left]
lists[right] = key
quick_sort(lists, low, left - 1)
quick_sort(lists, left + 1, high)
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
quick_sort(lst,0,len(lst)-1)
for i in range(len(lst)):
print lst[i],
六、堆排序
#-*- coding:utf8 -*-
'''
描述(较难理解)
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。
堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。
在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
'''
# 调整堆
def adjust_heap(lists, i, size):
lchild = 2 * i + 1
rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size) # 创建堆
def build_heap(lists, size):
for i in range(0, (size/2))[::-1]:
adjust_heap(lists, i, size) # 堆排序
def heap_sort(lists):
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i) lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
heap_sort(lst)
for i in range(len(lst)):
print lst[i],
七、归并排序
#-*- coding:utf8 -*-
'''
描述(利用递归)
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;
即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,
并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,
先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。
'''
def merge(left, right):
#合并过程
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result.extend(left[i:])
result.extend(right[j:])
return result def merge_sort(lists):
if len(lists) <= 1:
return lists
mid = len(lists) / 2
left = merge_sort(lists[:mid])
right = merge_sort(lists[mid:])
return merge(left, right) lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
tt = merge_sort(lst)
for i in range(len(tt)):
print tt[i],
八、基数排序
#-*- coding:utf8 -*-
'''
描述(表示没接触过,第一次听说)
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,
将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),
其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
'''
import math
def radix_sort(lists, radix=10):
k = int(math.ceil(math.log(max(lists), radix)))
bucket = [[] for i in range(radix)]
for i in range(1, k+1):
for j in lists:
bucket[j/(radix**(i-1)) % (radix**i)].append(j)
del lists[:]
for z in bucket:
lists += z
del z[:]
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
radix_sort(lst)
for i in range(len(lst)):
print lst[i],
下面附一下各个排序算法的时间复杂度以及稳定性比较:
python之八大排序方法的更多相关文章
- 八大排序方法汇总(选择排序,插入排序-简单插入排序、shell排序,交换排序-冒泡排序、快速排序、堆排序,归并排序,计数排序)
2013-08-22 14:55:33 八大排序方法汇总(选择排序-简单选择排序.堆排序,插入排序-简单插入排序.shell排序,交换排序-冒泡排序.快速排序,归并排序,计数排序). 插入排序还可以和 ...
- Python实现八大排序算法(转载)+ 桶排序(原创)
插入排序 核心思想 代码实现 希尔排序 核心思想 代码实现 冒泡排序 核心思想 代码实现 快速排序 核心思想 代码实现 直接选择排序 核心思想 代码实现 堆排序 核心思想 代码实现 归并排序 核心思想 ...
- Python实现八大排序(基数排序、归并排序、堆排序、简单选择排序、直接插入排序、希尔排序、快速排序、冒泡排序)
目录 八大排序 基数排序 归并排序 堆排序 简单选择排序 直接插入排序 希尔排序 快速排序 冒泡排序 时间测试 八大排序 大概了解了一下八大排序,发现排序方法的难易程度相差很多,相应的,他们计算同一列 ...
- python基础===八大排序算法的 Python 实现
本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一 ...
- python实现八大排序算法
插入排序 核心思想 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的.个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2).是稳定的排序方法.插入算法 ...
- Python中的排序方法sort(),sorted(),argsort()等
python 列表排序方法sort.sorted技巧篇 转自https://www.cnblogs.com/whaben/p/6495702.html,学习参考. Python list内置sort( ...
- 【Python】八大排序算法的比较
排序是数据处理比较核心的操作,八大排序算法分别是:直接插入排序.希尔排序.简单选择排序.堆排序.冒泡排序.快速排序.归并排序.基数排序 以下是排序图解: 直接插入排序 思想 直接插入排序是一种最简单的 ...
- Python中经典排序方法
数据的排序是在解决实际问题时经常用到的步骤,也是数据结构的考点之一,下面介绍10种经典的排序方法. 首先,排序方法可以大体分为插入排序.选择排序.交换排序.归并排序和桶排序四大类,其中,插入排序又分为 ...
- python 两种排序方法 sort() sorted()
python中有两种排序方法,list内置sort()方法或者python内置的全局sorted()方法 区别为: sort()方法对list排序会修改list本身,不会返回新list.sort()只 ...
随机推荐
- 论文翻译--StarCraft Micromanagement with Reinforcement Learning and Curriculum Transfer Learning
(缺少一些公式的图或者效果图,评论区有惊喜) (个人学习这篇论文时进行的翻译[谷歌翻译,你懂的],如有侵权等,请告知) StarCraft Micromanagement with Reinforce ...
- Leetcode 674.最长递增序列
最长递增序列 给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3 ...
- LeetCode 24——两两交换链表中的节点
1. 题目 2. 解答 新建一个哨兵结点作为头结点,然后每次交换相邻两个结点.并依次将它们连接到新链表中去,再将原链表中后面的结点也串到新链表后面.直至到达链尾或者剩余一个节点,则此时返回新链表的头结 ...
- deeplearning.ai课程学习(1)
本系列主要是我对吴恩达的deeplearning.ai课程的理解和记录,完整的课程笔记已经有很多了,因此只记录我认为重要的东西和自己的一些理解. 第一门课 神经网络和深度学习(Neural Netwo ...
- Vue折腾记 - (2)写一个不大靠谱的面包屑组件
先看效果图 我把页面标题和面包屑封装到一起..就不用涉及到组件的通讯了,不然又要去监听路由或者依赖状态去获取 这里写图片描述 疑惑解答: 点击父(也就是折叠菜单)为什么会跑到子菜单第一个 因为我第一个 ...
- HDU 3697 Selecting courses(贪心+暴力)(2010 Asia Fuzhou Regional Contest)
Description A new Semester is coming and students are troubling for selecting courses. Students ...
- 关于逻辑运算符&&和||及!
&& 表示and ,|| 表示or,!表示not. And(&&):对两个Boolean表达式执行逻辑和. AndAlso(&):与AndAlso类似,关键差异 ...
- hdu6103 Kirinriki(trick+字符串)
题解: 考虑一开始时,左边从1开始枚举,右边从n开始枚举 我们可以得到一个最大的值k. 但是如果这样依次枚举,复杂度肯定是n^3,是不行的 考虑如何利用上一次的结果,如果我们把1和n同时去掉 就可以利 ...
- 制作Windows10政府版的小白教程
制作Windows10政府版的小白教程 https://03k.org/make10entg.html 首先,宿主系统要比操作的系统新,因为低版本dism操作不了: 当然也可以单独下载ADK,提取最新 ...
- hdu4418 Time travel 【期望dp + 高斯消元】
题目链接 BZOJ4418 题解 题意:从一个序列上某一点开始沿一个方向走,走到头返回,每次走的步长各有概率,问走到一点的期望步数,或者无解 我们先将序列倍长形成循环序列,\(n = (N - 1) ...