题目描述

输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数

条件:

1.P,Q是正整数

2.要求P,Q以x0为最大公约数,以y0为最小公倍数.

试求:满足条件的所有可能的两个正整数的个数.

输入输出格式

输入格式:

二个正整数x0,y0

输出格式:

一个数,表示求出满足条件的P,Q的个数

输入输出样例

输入样例#1:

3 60

输出样例#1:

4

说明

P,Q有4种

3 60 15 12 12 15 60 3

我去,这种题目推式子都能推错

我要记住这个题

#include<iostream>
#include<cmath>
using namespace std; int m,n,ans; int gcd(int x,int y){
if(!y){return x;}
return gcd(y,x%y);
}
int main(){
cin>>n>>m;
for(int i=1;i<=sqrt(m);i++){
if(i*n>=m/i)break;
if(m%i==0&&gcd(i*n,m/i)==n){ans++;
}
}
cout<<ans*2;
return 0;
}

P1029 最大公约数和最小公倍数问题的更多相关文章

  1. [洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)

    [洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P, ...

  2. 洛谷——P1029 最大公约数和最小公倍数问题

    P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1 ...

  3. 【数论】P1029 最大公约数和最小公倍数问题

    题目链接 P1029 最大公约数和最小公倍数问题 思路 如果有两个数a和b,他们的gcd(a,b)和lcm(a,b)的乘积就等于ab. 也就是: ab=gcd(a,b)*lcm(a,b) 那么,接下来 ...

  4. 洛谷P1029 最大公约数和最小公倍数问题 [2017年6月计划 数论02]

    P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1 ...

  5. P1029最大公约数和最小公倍数

    P1029最大公约数和最小公倍数 #include <iostream> #include <cmath> #include <algorithm> #define ...

  6. 洛谷P1029 最大公约数和最小公倍数问题 题解

    题目链接:https://www.luogu.com.cn/problem/P1029 题目描述 输入 \(2\) 个正整数 \(x_0,y_0(2 \le x_0 \lt 100000,2 \le ...

  7. P1029 最大公约数和最小公倍数问题(思维题)

    题目描述 输入22个正整数x_0,y_0(2 \le x_0<100000,2 \le y_0<=1000000)x0​,y0​(2≤x0​<100000,2≤y0​<=100 ...

  8. 洛谷 P1029 最大公约数和最小公倍数问题 Label:Water&&非学习区警告

    题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为 ...

  9. luogu P1029 最大公约数和最小公倍数问题

    https://www.luogu.org/problem/show?pid=1029 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出 ...

  10. 洛谷P1029 最大公约数和最小公倍数问题

    题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为 ...

随机推荐

  1. C++ XML文件解析

    使用tinyxml2库,git地址https://github.com/leethomason/tinyxml2 只需要使用tinyxml2.h tinyxml2.cpp即可,同时需要using na ...

  2. BZOJ 3597 SCOI2014 方伯伯送椰子 网络流分析+SPFA

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3597 Description 四川的方伯伯为了致富,决定引进海南的椰子树.方伯伯的椰子园十 ...

  3. 【转】Virtual DOM

    前言 React 好像已经火了很久很久,以致于我们对于 Virtual DOM 这个词都已经很熟悉了,网上也有非常多的介绍 React.Virtual DOM 的文章.但是直到前不久我专门花时间去学习 ...

  4. CE-HTML简介

    1.典型的CE-HTML代码如下: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html ...

  5. java生成唯一的id编号

    GUID是一个128位长的数字,一般用16进制表示.算法的核心思想是结合机器的网卡.当地时间.一个随即数来生成GUID.从理论上讲,如果一台机器每秒产生10000000个GUID,则可以保证(概率意义 ...

  6. python 的sets list dictionary

    http://blog.csdn.net/joseph_happy/article/details/6717412 http://blog.csdn.net/joseph_happy/article/ ...

  7. 安装elasticsearch-1.7.1及中文IK和近义词配置

    安装elasticsearch及中文IK和近义词配置 https://www.cnblogs.com/yjf512/p/4789239.html 安装elasticsearch及中文IK和近义词配置 ...

  8. [洛谷P3195][HNOI2008]玩具装箱TOY

    题目大意:有n个物体,大小为$c_i$.把第i个到第j个放到一起,容器的长度为$x=j-i+\sum\limits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$.费用最小. 题解 ...

  9. HDOJ.2501 Tiling_easy version

    Tiling_easy version Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...

  10. Swing中使用UIManager批量自定义单一JComponent组件默认属性

    最近在研究Swing,被它的复杂性气的快吐血了,刚才本打算把JFrame的背景色换成白底,结果发现事情没想象中那么顺利,调用setBackground完全没有效果,猛然醒悟到JPanel本身是带不透明 ...