【BZOJ2186】[Sdoi2008]沙拉公主的困惑

Description

  大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。

Input

第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n

Output

共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值

Sample Input

1 11
4 2

Sample Output

1
数据范围:
对于100%的数据,1 < = N , M < = 10000000

题解:跟欧拉函数的求法类似,就是找出1-m中所有的素数pi,再将n!分别乘上(pi-1)/pi就行了

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
ll n,m,mod,T,num;
int p[10010];
int pri[1000000];
int jc[10000010],jpc[10000010];
bool np[10000010];
ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%mod;
x=x*x%mod,y>>=1;
}
return z;
}
int main()
{
scanf("%d%d",&T,&mod);
int i,j;
jc[1]=jpc[1]=1;
for(i=2;i<=10000000;i++)
{
jc[i]=1ll*jc[i-1]*i%mod,jpc[i]=jpc[i-1];
if(!np[i]) pri[++num]=i,jpc[i]=1ll*jpc[i]*(i-1)%mod*pm(i,mod-2)%mod;
for(j=1;j<=num&&1ll*i*pri[j]<=10000000;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0) break;
}
}
while(T--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",1ll*jc[n]*jpc[m]%mod);
}
return 0;
}

【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数的更多相关文章

  1. [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉 题目大意 给定n,m,求在1到n!内与m!互质的 ...

  2. [SDOI2008]沙拉公主的困惑 线性筛_欧拉函数_逆元_快速幂

    Code: #include<cstdio> using namespace std; typedef long long ll; const int maxn=10000000+1; l ...

  3. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  4. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  5. BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...

  6. [bzoj2186][Sdoi2008]沙拉公主的困惑_数论

    沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...

  7. BZOJ2186: [Sdoi2008]沙拉公主的困惑

    传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) ...

  8. BZOJ2186 SDOI2008沙拉公主的困惑(数论)

    由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中 ...

  9. [bzoj2186][Sdoi2008]沙拉公主的困惑——数论

    题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...

随机推荐

  1. ssl生成证书

    凝雨 - Yun 快乐编程每一天 - Happy Coding Every Days HOME ARCHIVES CATEGORIES TAGS ABOUT Openssl生成自签名证书,简单步骤 P ...

  2. Axure——恢复以及备份功能从容面对意外

    1.      背景 近期刚刚接手java项目,在进行了为期一周的需求理解之后,对于最初的原型也開始做微小的调整,十一期的小伙伴们也积极地參与进来,这使得我们这个团队不断地在壮大和温馨. 眼看着原型即 ...

  3. Docker的Jenkins Pipeline工作流

    原文地址:http://www.youruncloud.com/blog/127.html 分享主题 一个软件产品的开发周期中,尤其是敏捷开发,持续集成和持续部署是必不可少的环节,而随着产品的丰富,模 ...

  4. Android AIDL Service 跨进程传递复杂数据

    黑夜 黑夜给了我黑色的眼睛,我却用它寻找光明~ 传值方式 AIDL是同意跨进程传递值的,一般来说有三种方式: - 广播:这样的算是比較常见的一种方式了,传递小数据不错 - 文件:这个是保存到文件里.然 ...

  5. 基于tornado实现web camera

    基于tornado实现web camera 近期在学习python.找了一个框架学习,我选择的是tornado.由于其不仅仅是一个web开发框架,其还是一个server,异步事件库,一举多得. 我一直 ...

  6. PE下挂载注册表文件然后清除系统托盘空白图标缓存

    清除了右下角通知栏图标缓存TrayNotify(否则会出现一堆空白图标)清除缓存批处理脚本.bat如何在PE系统环境下清除宿主系统的托盘图标缓存? 清除了右下角通知栏图标缓存TrayNotify(否则 ...

  7. Atitit.数据库存储引擎的原理与attilax 总结

    Atitit.数据库存储引擎的原理与attilax 总结 1. 存储引擎是什么1 2. 其它数据库系统(包括大多数商业选择)仅支持一种类型的数据存储2 3. 表的存储有三个文件:结构+数据+索引2 4 ...

  8. YUV格式详细解释与FFMPEG的关系

    YUV主要的采样格式 主要的采样格式有YCbCr 4:2:0.YCbCr 4:2:2.YCbCr 4:1:1和 YCbCr 4:4:4.其中YCbCr 4:1:1 比较常用,其含义为:每个点保存一个 ...

  9. C++ Primer(第五版)读书笔记 & 习题解答 --- Chapter 3

    Chapter 3.1 1. using声明具有如下的形式: using namespace::name; Chapter 3.2 1. C++标准一方面对库类型所提供的操作做了规定,另一方面也对库的 ...

  10. java json字符串和对象互转

    /** * Created by admin on 2017/7/26. */ public class NewPost { private String title; private String ...