因为上次比赛sb地把一道树形dp当费用流做了,受了点刺激,用一天时间稍微搞一下树形DP,今后再好好搞一下)

基于背包原理的树形DP

poj 1947 Rebuilding Roads

题意:给你一棵树,让你求最少剪掉多少条边可以剪出一棵点数为m的子树.

解法:dp[i][j]表示i节点得到j个节点的子树至少要剪多少边,对于每个节点a和它的孩子b,如果剪掉b,则dp(s)[a][j]=dp(s-1)[a][j], 如果保留<a,b>dp(s)[a][j]=min{dp(s-1)[a][j - k] + dp[b][k]}.初始条件为dp[a][1] = 0;

为了不产生后效性,需要由大到小枚举j的值。ans=min{dp[i][m] + 1,dp[root][m]}

  1. void dfs(int a) {
  2. dp[a][1] = 0;
  3. for (int i = E[a]; i != -1; i = buf[i].ne) {
  4. int b = buf[i].be;
  5. dfs(b);
  6. num[a]+=num[b];
  7. for (int j =Math.min(m,num[a]); j > 0; j--) {
  8. dp[a][j]++;
  9. for (int k = 1; k <= j&&k<=num[b]; k++)
  10. dp[a][j] = Math.min(dp[a][j], dp[a][j - k] + dp[b][k]);
  11. }
  12. }
  13. }
void dfs(int a) {
dp[a][1] = 0;
for (int i = E[a]; i != -1; i = buf[i].ne) {
int b = buf[i].be;
dfs(b);
num[a]+=num[b];
for (int j =Math.min(m,num[a]); j > 0; j--) {
dp[a][j]++;
for (int k = 1; k <= j&&k<=num[b]; k++)
dp[a][j] = Math.min(dp[a][j], dp[a][j - k] + dp[b][k]);
}
}
}

poj 1155 TELE 

题意:其余点为转发站。客户端i愿支付的钱为pay[i],每条边需要的花费固定,问电台在保证不亏损的情况下,解法:dp[a][j] = Math.max(dp[a][j], dp[a][j - k] + dp[b][k]- buf[i].v);节点a给j个节点输送信号能赚多少钱 j k num有N座城堡,每座城堡都有一定的宝物,允许攻克M个城堡并获得里面的宝物。但有些城堡必须先攻克其他某一个特定的城堡才能攻克,问攻克M个城堡所获得的最多宝物的数量。

dp[a][j] = Math.max(dp[a][j], dp[a][k] + dp[b][j - k]);dp[a][j]代表从i开始攻克j的城堡的最大获利,初始化时dp[i][1]=i城堡内的宝贝数,dp[0][1]=0;dp[i][0]=0;ans=Max{dp[i][m],dp[0][m+1]};

------------------------------------------------------------------------------------------------------

Poj 2486 Apple Tree

题意:苹果树上有n个节点,每个节点数上有若干个苹果,问最多走m步后至多能吃多少个苹果。

解法:每个在路径上的节点有两种形态:一是以此节点为起点到达某点后不再返回,而是从此节点出发后返回再从其它孩子继续走。因此定义dp[a][j][0]为a节点第一种情况下走j步的最大获利dp[a][j][1]为a节点在第二种情况下走j步的最大获利。转移方程为:

dp[a][j][0]=Math.max(dp[a][j][0],dp[a][k][1]+dp[b][j-k-1][0]);
dp[a][j][0]=Math.max(dp[a][j][0],dp[a][k][0]+dp[b][j-k-2][1]);
dp[a][j][1]=Math.max(dp[a][j][1],dp[a][k][1]+dp[b][j-k-2][1])

初始化dp[i][0][1]=dp[i][0][0]=i节点的苹果数。ans=Max{0,dp[1][i][0]};

Poj 1655 balancing Act/poj 3107 Godfather

题意:一个节点的平衡因子定义为:删到此节点后形成的节点数最多的子树。求一棵树中平衡因子最大的节点。

解法,定义num[i]为i节点为根的子树的节点数max[i]为i节点孩子节点数的最大值,一个节点的平衡因子=ans= Math.max(ans, first + second);

Sgu149&&HDU2196 Computer

解法:一个点的最远路径或者是向下一直走或者是先走到父节点然后再从父节点开始走一条较长的路径。
     对于第一种情况由底向上更新求出每点的最长路径和次长路径即可;对于第二种情况,如果当前节点是父节点最长路径上的点,那么向上的最长路径=边权+父节点的次长路径,否则最长路径=边权+父节点的最长路径。得到向上的最长路径后更新最长路径和次长路径(如果更新了最长路径,需要更新一下原来向下最大孩子的状态,使它不是父节点最长路径上的点),从上向下dfs更新一下即可。

  1. int dfs(int a) {
  2. int temp, f = 0;
  3. for (int i = E[a]; i != -1; i = buf[i].ne) {
  4. int b = buf[i].be;
  5. temp = dfs(b) + buf[i].v;
  6. if (temp > first[a]) {
  7. second[a] = first[a];
  8. first[a] = temp;
  9. f = b;
  10. }
  11. else if(temp>second[a])
  12. second[a]=temp;
  13. }
  14. fid[a] = f;
  15. isf[f] = true;
  16. return first[a];
  17. }
  18. void work(int p, int a, int v) {
  19. int temp = -1;
  20. if (isf[a])
  21. temp = second[p] + v;
  22. else
  23. temp = first[p] + v;
  24. if (temp > first[a]) {
  25. second[a] = first[a];
  26. first[a] = temp;
  27. isf[fid[a]] = false;
  28. } else if (temp > second[a])
  29. second[a] = temp;
  30. for (int i = E[a]; i != -1; i = buf[i].ne) {
  31. int b = buf[i].be;
  32. work(a, b, buf[i].v);
  33. }
  34. }
int dfs(int a) {
int temp, f = 0;
for (int i = E[a]; i != -1; i = buf[i].ne) {
int b = buf[i].be;
temp = dfs(b) + buf[i].v;
if (temp > first[a]) {
second[a] = first[a];
first[a] = temp;
f = b;
}
else if(temp>second[a])
second[a]=temp;
}
fid[a] = f;
isf[f] = true;
return first[a];
} void work(int p, int a, int v) {
int temp = -1;
if (isf[a])
temp = second[p] + v;
else
temp = first[p] + v;
if (temp > first[a]) {
second[a] = first[a];
first[a] = temp;
isf[fid[a]] = false;
} else if (temp > second[a])
second[a] = temp; for (int i = E[a]; i != -1; i = buf[i].ne) {
int b = buf[i].be;
work(a, b, buf[i].v);
}
}

DP Intro - Tree DP Examples的更多相关文章

  1. DP Intro - Tree DP

    二叉苹果树 题目 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点 ...

  2. DP Intro - Tree POJ2342 Anniversary party

    POJ 2342 Anniversary party (树形dp 入门题) Anniversary party Time Limit: 1000MS   Memory Limit: 65536K To ...

  3. HDU5293(SummerTrainingDay13-B Tree DP + 树状数组 + dfs序)

    Tree chain problem Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  4. HDU3534(SummerTrainingDay13-C tree dp)

    Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. Partial Tree(DP)

    Partial Tree http://acm.hdu.edu.cn/showproblem.php?pid=5534 Time Limit: / MS (Java/Others) Memory Li ...

  6. 96. Unique Binary Search Trees (Tree; DP)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  7. DP Intro - poj 1947 Rebuilding Roads(树形DP)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  8. HDU 4359——Easy Tree DP?——————【dp+组合计数】

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  9. TYOI Day1 travel:Tree dp【处理重复走边】

    题意: 给你一棵树,n个节点,每条边有长度. 然后有q组询问(u,k),每次问你:从节点u出发,走到某个节点的距离mod k的最大值. 题解: 对于无根树上的dp,一般都是先转成以1为根的有根树,然后 ...

随机推荐

  1. 使用dockerfile-maven-plugin发布docker到私有仓库

    要想拥有私有docker仓库,需要安装registry镜像,最新版时2.0,具体可以看文档:https://docs.docker.com/registry/. 1. docker pull regi ...

  2. 下载特定区域内街景照片数据 | Download Street View Photos within Selected Region

    作者:姜虹,刘子煜,王玥瑶,杨安琪,天靖居士 街景图片可以通过api下载,但需要提供参数,参数中的poiid.panoid.location可以用来确定位置或全景图片的ID以确定对应的街景图片.优先级 ...

  3. 三分题两道:lightoj1146 Closest Distance、lightoj1240 Point Segment Distance (3D)

    lightoj1146 Two men are moving concurrently, one man is moving from A to B and other man is moving f ...

  4. windows phone 换肤(2)

    //这里有篇参考文章 http://www.cnblogs.com/tianhonghui/p/3373276.html#commentform 以下思路是来自徐老师,昨晚看了一个晚上球赛,睡了不到6 ...

  5. 洛谷P1345 [USACO5.4]奶牛的电信Telecowmunication(最小割)

    题目描述 农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流.这些机器用如下的方式发送电邮:如果存在一个由c台电脑组成的序列a1,a2,...,a(c),且a1与a2相 ...

  6. Centos查看端口占用令

    Centos查看端口占用情况命令,比如查看80端口占用情况使用如下命令: lsof -i tcp:80 列出所有端口 netstat -ntlp 1.开启端口(以80端口为例) 方法一: /sbin/ ...

  7. 八大排序算法的python实现(六)归并排序

    代码: #coding:utf-8 #author:徐卜灵 def merge(left,right): i,j = 0,0 result = [] while i < len(left) an ...

  8. webstorm激活服务器地址

    2017.1.4版本可用 http://idea.imsxm.com/

  9. 最近关于linux的一些小问题。

    redhat 用yum更新时需要注册付费.centos 不用. 原来版本的ifconfig 在centos中变为了ip addr.

  10. 三种timer控件的简单实例

    .system.windows.forms .system.threading.timer .system.timers.timer using System; using System.Collec ...