【[APIO2012]派遣】
直接线段树合并就好了
之后在线段树上二分贪心选取金额较少的
如果是左偏树的话就开一个大根堆,根和子树顺次合并,合并之后堆内所有元素总和如果大于\(m\)就删除堆顶,由于每个元素只会被删除一次,所以复杂度非常科学
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define maxn 100005
#define M 4000005
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline LL read()
{
char c=getchar();LL x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct E{int v,nxt;}e[maxn];
int n,head[maxn],cnt,num,R,rt[maxn],t[maxn],fa[maxn];
int l[M],r[M],d[M],sz;
LL s[M],m,a[maxn],b[maxn],c[maxn],ans;
inline void add(int x,int y) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;}
inline int find(LL x) {
int ll=1,rr=sz;
while(ll<=rr) {
int mid=ll+rr>>1;
if(c[mid]==x) return mid;
if(c[mid]>x) rr=mid-1;else ll=mid+1;
}
return 0;
}
int change(int now,int x,int y,int pos,LL val) {
if(!now) now=++cnt;
d[now]++,s[now]+=val;
if(x==y) return now;
int mid=x+y>>1;
if(pos<=mid) l[now]=change(l[now],x,mid,pos,val);
else r[now]=change(r[now],mid+1,y,pos,val);
return now;
}
int merge(int a,int b,int x,int y) {
if(!a) return b;if(!b) return a;
if(x==y) {
d[a]+=d[b],s[a]+=s[b];
return a;
}
int mid=x+y>>1;
l[a]=merge(l[a],l[b],x,mid),r[a]=merge(r[a],r[b],mid+1,y);
d[a]=d[l[a]]+d[r[a]],s[a]=s[l[a]]+s[r[a]];
return a;
}
int query(int now,int x,int y,LL k) {
if(x==y) {
if(!d[now]) return 0;
return min(d[now],k/c[x]);
}
int mid=x+y>>1;
if(k>s[l[now]]) return query(r[now],mid+1,y,k-s[l[now]])+d[l[now]];
return query(l[now],x,mid,k);
}
void dfs(int x) {
for(re int i=head[x];i;i=e[i].nxt) {
dfs(e[i].v);
rt[x]=merge(rt[x],rt[e[i].v],1,sz);
}
int now=query(rt[x],1,sz,m);
ans=max(ans,(LL)now*b[x]);
}
int main()
{
n=read(),m=read();
for(re int i=1;i<=n;i++) {
fa[i]=read(),c[i]=a[i]=read(),b[i]=read();
if(!fa[i]) R=i;else add(fa[i],i);
}
std::sort(c+1,c+n+1);
sz=std::unique(c+1,c+n+1)-c-1;
for(re int i=1;i<=n;i++) t[i]=find(a[i]);
for(re int i=1;i<=n;i++) rt[i]=change(rt[i],1,sz,t[i],a[i]);
dfs(R);
query(rt[1],1,sz,m);
printf("%lld\n",ans);
return 0;
}
【[APIO2012]派遣】的更多相关文章
- 数据结构,可并堆(左偏树):COGS [APIO2012] 派遣
796. [APIO2012] 派遣 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. 在这个帮派里,有一名忍者被称之为Master.除了Master以外,每名忍者都有且 ...
- [APIO2012]派遣
[APIO2012]派遣 题目大意: 给定一棵\(n(n\le10^5)\)个结点的有根树,每个点有代价\(c_i\)和权值\(l_i\),要求你选定一个结点\(k\),并在对应的子树中选取一个点集\ ...
- [luogu P1552] [APIO2012]派遣
[luogu P1552] [APIO2012]派遣 题目背景 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. 题目描述 在这个帮派里,有一名忍者被称之为Master.除 ...
- 洛谷1552 [APIO2012]派遣
洛谷1552 [APIO2012]派遣 原题链接 题解 luogu上被刷到了省选/NOI- ...不至于吧 这题似乎有很多办法乱搞? 对于一个点,如果他当管理者,那选的肯定是他子树中薪水最少的k个,而 ...
- [APIO2012]派遣 左偏树
P1552 [APIO2012]派遣 题面 考虑枚举每个节点作为管理者,计算所获得的满意程度以更新答案.对于每个节点的计算,贪心,维护一个大根堆,每次弹出薪水最大的人.这里注意,一旦一个人被弹出,那么 ...
- BZOJ2809&&LG1552 APIO2012派遣(线段树合并)
BZOJ2809&&LG1552 APIO2012派遣(线段树合并) 题面 自己找去 HINT 简化一题面就是让你从每个点的子树中以\(<=m\)的代价选取尽可能多的点,然后乘上 ...
- APIO2012派遣
2809: [Apio2012]dispatching Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1196 Solved: 586[Submit ...
- 洛谷P1552 [APIO2012] 派遣 [左偏树,树形DP]
题目传送门 忍者 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都 ...
- APIO2012 派遣dispatching | 左偏树
题目链接:戳我 就是尽可能地选取排名小的,加起来就可以了.然后我们考虑利用一个大根堆,一个一个合并,如果超过派遣的钱,我们就把费用最大的那个忍者丢出队列. 左偏树,作为一个十分优秀的可并堆,我们这道题 ...
- XSY1036 [Apio2012]派遣
题面 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个 ...
随机推荐
- 文献综述四:基于 UML 技术的客户关系管理系统实现
一.基本信息 标题:基于 UML 技术的客户关系管理系统实现 时间:2015 出版源:电子设计工程 文件分类:uml技术的研究 二.研究背景 使用UML 建模技术和 B/S 架构访问模式,设计出可应用 ...
- Python+Selenium操作select下拉框
首先需要倒入Select模块: from selenium.webdriver.support.select import Select 常用方法: 通过索引定位:select_by_index() ...
- shell特殊字符汇总【转】
Linux下无论如何都是要用到shell命令的,在Shell的实际使用中,有编程经验的很容易上手,但稍微有难度的是shell里面的那些个符号,各种特殊的符号在我们编写Shell脚本的时候如果能够用的好 ...
- Java面试题搜集
这里是一些Java面试题,从"程序员小灰"公众号转载过来,备用. 项目介绍 明确项目是做什么的 明确项目的价值.(为什么做这个项目,它解决了用户什么痛点,它带来什么价值?) 明确项 ...
- bootstrap框架的使用
1.默认修改input输入框激活的颜色(充电桩) .form-control:focus, .ms-choice:focus, input[type=text]:focus, input[type=p ...
- Java面试题03-访问权限控制
Java面试题03-访问权限控制 1. Java中的包主要是为了防止类文件命名冲突以及方便进行代码组织和管理,因此采用域名倒置的方式来进行命名: 2. Java解释器的运行过程:首先找到环境变量CLA ...
- 将 flask 中的 session 存储到 SQLite 数据库中
将 flask 中的 session 存储到 SQLite 数据库中 使用 flask 构建服务器后端时,常需要在浏览器端存储 cookie 用于识别不同用户,根据不同的 cookie 判断出当前请求 ...
- BNU 4356 ——A Simple But Difficult Problem——————【快速幂、模运算】
A Simple But Difficult Problem Time Limit: 5000ms Memory Limit: 65536KB 64-bit integer IO format: %l ...
- 【linux相识相知】VIM编辑器
Vim是一个类似Vi的著名的功能强大.高度可定制的文本编辑器,在Vi的基础上改进和增加了许多的功能,VIM是自由软件,今天我们就来讲讲VIM的使用方法. 本文是基于centos7上的vim编辑器演示的 ...
- tomcat8.5.8遇到的两个问题
压力测试场景,前端nginx反向代理到4个tomcat实例,在其中的一个实例上产生了大量的countDownConnection Incorrect connection count警告 WARNIN ...