qbxt Day 5 图论一些基础知识
就是一些感觉比较容易忘的知识
假设根为第0层, 在二叉树的i层上至多有2i个结点,整颗二叉树(深度为k)最多有\(2^{k+1}-1\)个节点
对于任何一棵非空二叉树,如果叶结点个数为\(n_0\),度为2的结点个数为\(n_2\),则有: \(n_0 = n_2 + 1\)。然后我们就能得到在二叉树中,叶结点的个数是非叶节点的个数+1。
遍历一张图\(G(V,E)\),如果存在一条路径,使得所有边只被遍历过一次,则称这条路径为欧拉路径,若起点和重点重合,则称为欧拉回路
欧拉路径&&回路の判定
无向图:连通图中,每个点的度数为偶数,或有两个点的度数是奇数。当每个点的度数都为偶数时,则存在欧拉回路。
有向图:若连通图中,所有点的出度等于入度。或者有一个点时入读-出度=1,一个点入读-出度=1。当每个点的入度等于出度时,存在欧拉回路。
若存在后一种情况,则欧拉路径需要以入读-出度=1的点为起点,另一个点为终点。
-对一个有向无环图G进行拓扑排序, 是将G中所有顶点排成一个线性序列,使对于图中任意弧\(<u, v> \in E\),u在序列中出现在v之前。
感觉今天好水呀
强连通分量(Strongly connected components)
在有向图G中,如果任意两个不同的顶点相互可达,则称该有向图是强连通的。有向图G的极大强连通子图称为G的强连通分支。
转置图: 将有向图G中的每一条边反向形成的图称为\(G\)的转置\(G^T\)。
原图G和GT的强连通分支是一样的。
割点
在无向连通图G上进行如下定义:
割点:若删掉某点P后, G分裂为两个或两个以上的子图,则称P为G的割点。
割点集合: 在无向连通图G中,如果有一个顶点集合,删除这个顶点集合以及与该点集中的顶点相关联的边以后, 原图分成多于一个连通块,则称这个点集为G的割点集合。
点连通度:最小割点集合的大小称为无向图G的点连通度。
qbxt Day 5 图论一些基础知识的更多相关文章
- 数据结构&&算法基础知识
写本篇主要是为了将基础知识梳理一遍,天天加一些基本东西,以后复习时可以返回来看看. 数据结构&&基础算法: 基本算法: 二分查找 二叉树: 二叉树的各种遍历 位操作: 排序: 排序算法 ...
- 关于图算法 & 图分析的基础知识概览
网址:https://learning.oreilly.com/library/view/graph-algorithms-/9781492060116/ 你肯定没有读过这本书,因为这本书的发布日期是 ...
- 关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL))
关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL)) 欢迎fork本项目原始链接:关于图计算&图学习的基础知识概览:前置知识点学习 ...
- .NET面试题系列[1] - .NET框架基础知识(1)
很明显,CLS是CTS的一个子集,而且是最小的子集. - 张子阳 .NET框架基础知识(1) 参考资料: http://www.tracefact.net/CLR-and-Framework/DotN ...
- RabbitMQ基础知识
RabbitMQ基础知识 一.背景 RabbitMQ是一个由erlang开发的AMQP(Advanced Message Queue )的开源实现.AMQP 的出现其实也是应了广大人民群众的需求,虽然 ...
- Java基础知识(壹)
写在前面的话 这篇博客,是很早之前自己的学习Java基础知识的,所记录的内容,仅仅是当时学习的一个总结随笔.现在分享出来,希望能帮助大家,如有不足的,希望大家支出. 后续会继续分享基础知识手记.希望能 ...
- selenium自动化基础知识
什么是自动化测试? 自动化测试分为:功能自动化和性能自动化 功能自动化即使用计算机通过编码的方式来替代手工测试,完成一些重复性比较高的测试,解放测试人员的测试压力.同时,如果系统有不份模块更改后,只要 ...
- [SQL] SQL 基础知识梳理(一)- 数据库与 SQL
SQL 基础知识梳理(一)- 数据库与 SQL [博主]反骨仔 [原文地址]http://www.cnblogs.com/liqingwen/p/5902856.html 目录 What's 数据库 ...
- [SQL] SQL 基础知识梳理(二) - 查询基础
SQL 基础知识梳理(二) - 查询基础 [博主]反骨仔 [原文]http://www.cnblogs.com/liqingwen/p/5904824.html 序 这是<SQL 基础知识梳理( ...
随机推荐
- PHP unlink删除本地中文名称的文件
由于编码不一样,用unlink()方法删除本地中文名称的材料之前,必须先转码,才能删除成功. 核心代码如下: //删除本地的议题材料(本地上传的材料) if($local_ma ...
- unity摄像机脚本
直接挂载在摄像机上面即可 1.摄像机自由平移 using UnityEngine; using System.Collections; /// <summary> /// 摄像机视角自由移 ...
- 全局数据 GetGlobalDataSet
/// <summary> /// 获取全局数据 /// </summary> /// <returns></returns> public DataS ...
- ArrayList集合长度的问题
// 每次集合中实际包含的元素个数(count)超过了可包含元素的个数capcity //的时候集合就会向内存中申请多开启一倍的空间,来保证集合长度够用 static void Main(strin ...
- C#基础知识-引用类型和值类型的区别(六)
在第一篇中我们介绍了C#中基本的15种数据类型,这15种数据类型中又分为两大类,一种是值类型,一种是引用类型.值类型有sbyte.short.long.int.byte.ushort.uint.ulo ...
- 05.if结构
分支结构:if if-else 选择结构:if else-if switch-case 循环结构:while do-while for foreach if语句 语法: if(判断条件) { //要 ...
- SOAP介绍,为学习WCF做准备
SOAP 1.什么是SOAP? 答:简单对象访问协议是交换数据的一种协议规范,是一种轻量的.简单的.基于XML的协议, 它被设计成在WEB上交换结构化的和固化的信息.WebService的三要素 SO ...
- 简单Java程序向实用程序的过度:二进制文件的读写
File I/O中常见的文件读写: 1.字节流读写文本文件 FileInputStream; FileOutputStream; 2.字符流读写文本文件 FileReader; FileWriter; ...
- java项目升级spring4.3.x 、jdk1.8 、tomcat8.5遇到的坑及解决方案
在将spring3.x 升级为4.3.x,jdk1.7 tomcat7升级到jdk1.8.tomcat8.5过程中,碰到了很多问题,也学习到了很多东西,现将这些问题分享出来,方便大家后续遇到同样问题时 ...
- git丢弃修改
丢弃本地所有更改: git fetch origin git reset --hard origin/[对应的分支] 更改上次提交的注释: git commit --amend 会进到(vim编 ...