qbxt Day 5 图论一些基础知识
就是一些感觉比较容易忘的知识
假设根为第0层, 在二叉树的i层上至多有2i个结点,整颗二叉树(深度为k)最多有\(2^{k+1}-1\)个节点
对于任何一棵非空二叉树,如果叶结点个数为\(n_0\),度为2的结点个数为\(n_2\),则有: \(n_0 = n_2 + 1\)。然后我们就能得到在二叉树中,叶结点的个数是非叶节点的个数+1。
遍历一张图\(G(V,E)\),如果存在一条路径,使得所有边只被遍历过一次,则称这条路径为欧拉路径,若起点和重点重合,则称为欧拉回路
欧拉路径&&回路の判定
无向图:连通图中,每个点的度数为偶数,或有两个点的度数是奇数。当每个点的度数都为偶数时,则存在欧拉回路。
有向图:若连通图中,所有点的出度等于入度。或者有一个点时入读-出度=1,一个点入读-出度=1。当每个点的入度等于出度时,存在欧拉回路。
若存在后一种情况,则欧拉路径需要以入读-出度=1的点为起点,另一个点为终点。
-对一个有向无环图G进行拓扑排序, 是将G中所有顶点排成一个线性序列,使对于图中任意弧\(<u, v> \in E\),u在序列中出现在v之前。
感觉今天好水呀
强连通分量(Strongly connected components)
在有向图G中,如果任意两个不同的顶点相互可达,则称该有向图是强连通的。有向图G的极大强连通子图称为G的强连通分支。
转置图: 将有向图G中的每一条边反向形成的图称为\(G\)的转置\(G^T\)。
原图G和GT的强连通分支是一样的。
割点
在无向连通图G上进行如下定义:
割点:若删掉某点P后, G分裂为两个或两个以上的子图,则称P为G的割点。
割点集合: 在无向连通图G中,如果有一个顶点集合,删除这个顶点集合以及与该点集中的顶点相关联的边以后, 原图分成多于一个连通块,则称这个点集为G的割点集合。
点连通度:最小割点集合的大小称为无向图G的点连通度。
qbxt Day 5 图论一些基础知识的更多相关文章
- 数据结构&&算法基础知识
写本篇主要是为了将基础知识梳理一遍,天天加一些基本东西,以后复习时可以返回来看看. 数据结构&&基础算法: 基本算法: 二分查找 二叉树: 二叉树的各种遍历 位操作: 排序: 排序算法 ...
- 关于图算法 & 图分析的基础知识概览
网址:https://learning.oreilly.com/library/view/graph-algorithms-/9781492060116/ 你肯定没有读过这本书,因为这本书的发布日期是 ...
- 关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL))
关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL)) 欢迎fork本项目原始链接:关于图计算&图学习的基础知识概览:前置知识点学习 ...
- .NET面试题系列[1] - .NET框架基础知识(1)
很明显,CLS是CTS的一个子集,而且是最小的子集. - 张子阳 .NET框架基础知识(1) 参考资料: http://www.tracefact.net/CLR-and-Framework/DotN ...
- RabbitMQ基础知识
RabbitMQ基础知识 一.背景 RabbitMQ是一个由erlang开发的AMQP(Advanced Message Queue )的开源实现.AMQP 的出现其实也是应了广大人民群众的需求,虽然 ...
- Java基础知识(壹)
写在前面的话 这篇博客,是很早之前自己的学习Java基础知识的,所记录的内容,仅仅是当时学习的一个总结随笔.现在分享出来,希望能帮助大家,如有不足的,希望大家支出. 后续会继续分享基础知识手记.希望能 ...
- selenium自动化基础知识
什么是自动化测试? 自动化测试分为:功能自动化和性能自动化 功能自动化即使用计算机通过编码的方式来替代手工测试,完成一些重复性比较高的测试,解放测试人员的测试压力.同时,如果系统有不份模块更改后,只要 ...
- [SQL] SQL 基础知识梳理(一)- 数据库与 SQL
SQL 基础知识梳理(一)- 数据库与 SQL [博主]反骨仔 [原文地址]http://www.cnblogs.com/liqingwen/p/5902856.html 目录 What's 数据库 ...
- [SQL] SQL 基础知识梳理(二) - 查询基础
SQL 基础知识梳理(二) - 查询基础 [博主]反骨仔 [原文]http://www.cnblogs.com/liqingwen/p/5904824.html 序 这是<SQL 基础知识梳理( ...
随机推荐
- C#的params参数遇到null
params参数支持数组作为参数传入,但并不支持List 定义一个使用params的参数 private static void UseParam(params int[] args) { if (a ...
- 百度地图api-动态添加覆盖物
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- nagios监控远程端口
check_port 位置:/usr/local/nagios/libexec/ 代码(新建可执行文件) #!/bin/sh /usr/local/nagios/libexec/check_tcp - ...
- http反向代理之haproxy详解
1.反向代理定义 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从服务器上得到的结果返回给internet上请求 ...
- nyoj 1205——简单问题——————【技巧题】
简单问题 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 给你一个n*m的矩阵,其中的元素每一行从左到右按递增顺序排序,每一列从上到下按递增顺序排序,然后给你一些数x ...
- 【转载】Web 研发模式演变
一.简单明快的早期时代 可称之为 Web 1.0 时代,非常适合创业型小项目,不分前后端,经常 3-5 人搞定所有开发.页面由 JSP.PHP 等工程师在服务端生成,浏览器负责展现.基本上是服务端给什 ...
- 很有用的PHP笔试题系列三
1. 什么事面向对象?主要特征是什么? 面向对象是程序的一种设计方式,它利于提高程序的重用性,使程序结构更加清晰.主要特征:封装.继承.多态. 2. SESSION 与 COOKIE的区别是什么,请从 ...
- js数组与字符串相互转换
一.数组转字符串(将数组元素用某个字符连接成字符串) var a, b;a = new Array(0,1,2,3,4);b = a.join("-"); 二.字符串转数组(将字符 ...
- 【Linux】安装配置Tomcat7
第一步:下载Tomcat安装包 下载地址:https://tomcat.apache.org/download-70.cgi [root@localhost ~]# wget http://mirro ...
- HIVE的sql语句操作
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的SQL查 ...