线段树+扫描线【p1884】[Usaco12FEB]过度种植(银)Overplanting …
Description
在一个笛卡尔平面坐标系里(则X轴向右是正方向,Y轴向上是正方向),有\(N(1<=N<=1000)\)个矩形,第i个矩形的左上角坐标是\((x1, y1)\),右下角坐标是\((x2,y2)\)。问这\(N\)个矩形所覆盖的面积是多少?注意:被重复覆盖的区域的面积只算一次。
Input
第一行,一个整数N。 \((1<=N<=1000)\)。
接下来有\(N\)行,每行描述一个矩形的信息,分别是矩形的\(x1、y1、x2、y2\)。
其中 \(−10^8<=x1,y1,x2,y2<=10^8\)。
Ouput
一个整数,被N个矩形覆盖的区域的面积。
难得遇到一个裸的扫描线的题,竟然没切掉 emmm.
看到\(x,y\)的坐标范围,离散化就好了!
没有一遍切,竟然是没开\(long \ \ long\)!!!
太难受了,关于这个的话就不多BB,网上讲解很多.
大家可以去搜一下。(貌似NOIP不会考,暂且学了)
将来有时间写讲解好了 qwq.
代码
#include<cstdio>
#include<algorithm>
#include<iostream>
#define int long long
#define R register
using namespace std;
const int gz=10086;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
struct cod
{
int l,r,h;
int f;
bool operator <(const cod&a)const
{
return h<a.h;
}
}edge[gz];
struct tre
{
int l,r,s;
int len;
}tr[gz];
#define ls o<<1
#define rs o<<1|1
int x[gz],n,tot;
void build(R int o,R int l,R int r)
{
tr[o].l=l;tr[o].r=r;
if(l==r)return;
R int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
}
inline void up(R int o)
{
if(tr[o].s)
tr[o].len=x[tr[o].r+1]-x[tr[o].l];
else if(tr[o].l==tr[o].r)
tr[o].len=0;
else tr[o].len=tr[ls].len+tr[rs].len;
}
void change(R int o,R int l,R int r,R int del)
{
if(tr[o].l==l and tr[o].r==r)
{
tr[o].s+=del;
up(o);
return;
}
R int mid=(tr[o].l+tr[o].r)>>1;
if(r<=mid) change(ls,l,r,del);
else if(l>mid) change(rs,l,r,del);
else change(ls,l,mid,del),change(rs,mid+1,r,del);
up(o);
}
signed main()
{
in(n);
for(R int i=1;i<=n;i++)
{
R int x1,x2,y1,y2;
in(x1),in(y1),in(x2),in(y2);
edge[++tot].l=x1;edge[tot].r=x2;edge[tot].f=-1;
edge[tot].h=y1;x[tot]=x1;
edge[++tot].l=x1;edge[tot].r=x2;edge[tot].f=1;
edge[tot].h=y2;x[tot]=x2;
}
sort(edge+1,edge+tot+1);
sort(x+1,x+tot+1);
int new_n=1;
for(R int i=2;i<=tot;i++)
if(x[new_n]!=x[i])x[++new_n]=x[i];
build(1,1,new_n);
int ans=0;
for(R int i=1;i<=tot;i++)
{
R int l=lower_bound(x+1,x+new_n+1,edge[i].l)-x;
R int r=lower_bound(x+1,x+new_n+1,edge[i].r)-x-1;
change(1,l,r,edge[i].f);
ans+=(edge[i+1].h-edge[i].h)*tr[1].len;
}
printf("%lld",ans);
}
线段树+扫描线【p1884】[Usaco12FEB]过度种植(银)Overplanting …的更多相关文章
- 【Codeforces720D】Slalom 线段树 + 扫描线 (优化DP)
D. Slalom time limit per test:2 seconds memory limit per test:256 megabytes input:standard input out ...
- Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)
题目链接:http://codeforces.com/contest/522/problem/D 题目大意: 给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...
- 【POJ-2482】Stars in your window 线段树 + 扫描线
Stars in Your Window Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11706 Accepted: ...
- HDU 4419 Colourful Rectangle --离散化+线段树扫描线
题意: 有三种颜色的矩形n个,不同颜色的矩形重叠会生成不同的颜色,总共有R,G,B,RG,RB,GB,RGB 7种颜色,问7种颜色每种颜色的面积. 解法: 很容易想到线段树扫描线求矩形面积并,但是如何 ...
- BZOJ-3228 棋盘控制 线段树+扫描线+鬼畜毒瘤
3228: [Sdoi2008]棋盘控制 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 23 Solved: 9 [Submit][Status][D ...
- BZOJ-3225 立方体覆盖 线段树+扫描线+乱搞
看数据范围像是个暴力,而且理论复杂度似乎可行,然后被卡了两个点...然后来了个乱搞的线段树+扫描线.. 3225: [Sdoi2008]立方体覆盖 Time Limit: 2 Sec Memory L ...
- hdu 5091(线段树+扫描线)
上海邀请赛的一道题目,看比赛时很多队伍水过去了,当时还想了好久却没有发现这题有什么水题的性质,原来是道成题. 最近学习了下线段树扫描线才发现确实是挺水的一道题. hdu5091 #include &l ...
- POJ1151+线段树+扫描线
/* 线段树+扫描线+离散化 求多个矩形的面积 */ #include<stdio.h> #include<string.h> #include<stdlib.h> ...
- POJ-1151-Atlantis(线段树+扫描线+离散化)[矩形面积并]
题意:求矩形面积并 分析:使用线段树+扫描线...因为坐标是浮点数的,因此还需要离散化! 把矩形分成两条边,上边和下边,对横轴建树,然后从下到上扫描上去,用col表示该区间有多少个下边,sum代表该区 ...
- HDU 5107 线段树扫描线
给出N个点(x,y).每一个点有一个高度h 给出M次询问.问在(x,y)范围内第k小的高度是多少,没有输出-1 (k<=10) 线段树扫描线 首先离散化Y坐标,以Y坐标建立线段树 对全部的点和询 ...
随机推荐
- 2017 Multi-University Training Contest - Team 2 Puzzle
题目大意: 给定n, m, p.然后按照一个规则往n*m的方格里填数,最后一个方格是空格,然后玩拼图游戏,问能否复原 规则是:把1~n*m-1的排列中的第1,p+1,2*p+1.....个数依次取出来 ...
- 洛谷 [CQOI2015]选数 解题报告
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...
- dva的基本用法
dva是一个状态管理工具,整合了redux,redux-saga,react-router,fetch等框架,目前只能用于react的状态管理 1. dva的models dva的主要作用还是整合了r ...
- bzoj2002: [Hnoi2010]Bounce 弹飞绵羊 分块
这个题体现了分块不只是最大值最小值众数次数,而是一种清真的思想. 我们把整个序列分块,在每个块里处理每个位置跳出这个块的次数和跳出的位置,那么每次修改n0.5,每次查询也是,那么O(m* n0.5)的 ...
- tomcat编码配置
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" ...
- css做中划线与文字排版
html: <div class="spilt"> <span class="left"></span> < ...
- 也说JS脚本加载控制
问题背景 前端采用的 iframe + html 做后台管理系统.现在js.jquery插件非常多,每次页面都是引用就类似这样: <script src="../Scripts/jqu ...
- JAVA Eclipse 教程
http://www.runoob.com/eclipse/eclipse-tutorial.html
- python模块之os.path
对文件路径的操作 os.path.split(p)函数返回一个路径的目录名和文件名. os.path.splitext():分离文件名与扩展名 os.path.isfile()和os.path.isd ...
- [ 手记 ] Oracle 11g安装过程
安装环境: 操作系统:Centos6.4 Desktop 主机名:oracle 内存:2G 安装前准备: 修改主机名: [root@oracle ~]# vim /etc ...