hdu6158(圆的反演)
hdu6158
题意
初始有两个圆,按照标号去放圆,问放完 \(n\) 个圆后的总面积。
分析
圆的反演的应用。
参考blog
设反演圆心为 \(O\) 和反演半径 \(R\)
圆的反演的定义:
已知一圆 \(C\) ,圆心为 \(O\) ,半径为 \(R\) ,如果 \(P\) 与 \(P'\)在过圆心 \(O\) 的直线上且 \(OP \cdot OP'=R^2\),则称 \(P\) 与 \(P'\) 关于 \(O\) 互为反演点。
有圆的反演的几个性质:
- 经过\(O\)的圆,反演后成为不经过\(O\)的一条直线
- 不经过\(O\)的圆,反演后成为另一个圆,且圆心并不对应
- 不经过\(O\)的直线反演后成为一个经过\(O\)的圆
- 过 \(O\)的直线反演后不变
以 \((-4, 0)\) 为反演圆心,选取某一半径。( 上图数据并不准确,只是大致反应图形间的关系 )
那么将要填充的所有圆反演之后就变成了两条直线间具有相同半径的小圆,其中左边的直线为外面的大圆反演而来,右边的直线为里面的大圆反演而来。
小圆的圆心与反演圆心的连线在小圆上的交点,再反演一次得到两个点,它们之间的距离就是原来圆的直径。
code
#include<bits/stdc++.h>
using namespace std;
const double PI = acos(-1);
inline double Sqr(double x) { return x * x; }
int main() {
int T;
cin >> T;
while(T--) {
double r1, r2;
int n;
cin >> r1 >> r2 >> n;
if(r1 < r2) swap(r1, r2); // r1:大 r2:小
double x = (1.0 / r2 / 2.0 + 1.0 / r1 / 2.0) / 2.0;
double r = (1.0 / r2 / 2.0 - 1.0 / r1 / 2.0) / 2.0;
double ans = PI * (r1 - r2) * (r1 - r2);
double h = 2 * r;
for(int i = 1; i <= n / 2; i++) {
double d = hypot(x, h);
double res = PI * Sqr((1.0 / (d - r) - 1.0 / (d + r)) / 2.0);
ans += res;
if(i * 2 < n) ans += res;
h += 2.0 * r;
if(res * (n - 2 * i) < 1e-6) break;
}
printf("%.5f\n", ans);
}
return 0;
}
hdu6158(圆的反演)的更多相关文章
- 「HDU6158」 The Designer(圆的反演)
题目链接多校8-1009 HDU - 6158 The Designer 题意 T(<=1200)组,如图在半径R1.R2相内切的圆的差集位置依次绘制1,2,3,到n号圆,求面积之和(n< ...
- 圆的反演变换(HDU4773)
题意:给出两个相离的圆O1,O2和圆外一点P,求构造这样的圆:同时与两个圆相外切,且经过点P,输出圆的圆心和半径 分析:画图很容易看出这样的圆要么存在一个,要么存在两个:此题直接解方程是不容易的,先看 ...
- 【 HDU4773 】Problem of Apollonius (圆的反演)
BUPT2017 wintertraining(15) #5G HDU - 4773 - 2013 Asia Hangzhou Regional Contest problem D 题意 给定两个相离 ...
- The Designer (笛卡尔定理+韦达定理 || 圆的反演)
Nowadays, little haha got a problem from his teacher.His teacher wants to design a big logo for the ...
- Pick定理、欧拉公式和圆的反演
Pick定理.欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod ...
- HOJ 13102 Super Shuttle (圆的反演变换)
HOJ 13102 Super Shuttle 链接:http://49.123.82.55/online/?action=problem&type=show&id=13102 题意: ...
- CF77E Martian Food(圆的反演or 笛卡尔定理+韦达定理)
题面 传送门 这题有两种方法(然而两种我都想不到) 方法一 前置芝士 笛卡尔定理 我们定义一个圆的曲率为\(k=\pm {1\over r}\),其中\(r\)是圆的半径 若在平面上有两两相切,且六个 ...
- 2017多校第6场 HDU 6097 Mindis 计算几何,圆的反演
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6097 题意:有一个圆心在原点的圆,给定圆的半径,给定P.Q两点坐标(PO=QO,P.Q不在圆外),取圆 ...
- HDU-4773 Problem of Apollonius (圆的反演)
参考: https://oi-wiki.org/geometry/inverse/ https://blog.csdn.net/acdreamers/article/details/16966369 ...
随机推荐
- P1196 [NOI2002]银河英雄传说
题目描述 公元五八○一年,地球居民迁至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山压顶 ...
- hdu 6203 ping ping ping(LCA+树状数组)
hdu 6203 ping ping ping(LCA+树状数组) 题意:给一棵树,有m条路径,问至少删除多少个点使得这些路径都不连通 \(1 <= n <= 1e4\) \(1 < ...
- 【BZOJ 3551】[ONTAK2010] Peaks加强版 Kruskal重构树+树上倍增+主席树
这题真刺激...... I.关于Kruskal重构树,我只能开门了,不过补充一下那玩意还是一棵满二叉树.(看一下内容之前请先进门坐一坐) II.原来只是用树上倍增求Lca,但其实树上倍增是一种方法,L ...
- Working with large data sets in MySQL
What does working with large data sets in mySQL teach you ? Of course you have to learn a lot about ...
- B. Minimum Ternary String (这个B有点狠)
B. Minimum Ternary String time limit per test 1 second memory limit per test 256 megabytes input sta ...
- missing blocks错误
Datanode的日志中看到: 10/12/14 20:10:31 INFO hdfs.DFSClient: Could not obtain block blk_XXXXXXXXXXXXXXXXXX ...
- input 单选按钮radio 取消选中(转载)
input单选按钮: 在radio按钮中添加属性tag 0代表未被选中 HTML代码: <input name="rdo1" value="AA" ty ...
- java+ssh+eclipse开发过程问题记录
原文 http://www.sdfengxi.com/?p=408 最近在忙着的项目是基于cloudstack平台的管理平台,因为CloudStack使用java开发,管理机上已部署好rhel+t ...
- Java中一些知识的归纳总结
1.包装类型与基本数据类型的区别. Java语言是一个面向对象的语言,但是Java中的基本数据类型却是不面向对象的,这使得Java在实际使用时存在很多的不便,为了解决这个不足,在设计类时为每个基本数据 ...
- Python基础(6)_函数
一 为何要有函数? 不加区分地将所有功能的代码垒到一起,问题是: 代码可读性差 代码冗余 代码可扩展差 如何解决? 函数即工具,事先准备工具的过程是定义函数,拿来就用指的就是函数调用 结论:函数使用必 ...