同bzoj3930。

(日常盗题图)

#include<bits/stdc++.h>
#define N 1000010
#define yql 1000000007
#define ll long long
using namespace std;
int n;
ll m,l,r,k;ll f[N];
ll Pow(ll x,int y){
ll ans=;
while(y){if (y&) ans=ans*x%yql; x=x*x%yql; y>>=; }
return ans;
}
ll read(){
ll x=;int f=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return x*f;
}
int main(){
freopen("aimiliyadeicemagic.in","r",stdin);
freopen("aimiliyadeicemagic.out","w",stdout);
scanf("%d",&n);k=read();l=read();r=read();
for (ll i=r-l;i>=;i--){
ll lx=(l-)/(k*i),rx=r/(k*i);
f[i]=(Pow(rx-lx,n)-(rx-lx)+yql)%yql;
for (int j=;i*j<=r-l;j++) f[i]=(f[i]-f[i*j]+yql)%yql;
}
if (l<=k&&k<=r) f[]++;
printf("%d\n",f[]);
}

【反演复习计划】【COGS2433】&&【bzoj3930,CQOI2015选数】爱蜜莉雅的冰魔法的更多相关文章

  1. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  2. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  3. BZOJ3930 [CQOI2015]选数【莫比乌斯反演】

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  4. BZOJ3930 [CQOI2015]选数 【容斥】

    题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研 ...

  5. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  6. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  7. [CQOI2015]选数(莫比乌斯反演,杜教筛)

    [CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...

  8. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

  9. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

随机推荐

  1. 一个简单的ipfs音乐播放器的实现

    IPFS音乐播放器 IPFS相关 IPFS第一次亲密接触 什么是IPFS IPFS对比HTTP/FTP等协议的优势 IPFS应用场景 -移动数据 交易 路由 网络 定义数据 命名 使用数据 具体场景; ...

  2. [leetcode-652-Find Duplicate Subtrees]

    Given a binary tree, return all duplicate subtrees. For each kind of duplicate subtrees, you only ne ...

  3. PM所该学习的

     最近第二阶段实在大家都是大一大二,面临的考试很多也很难,很多时候就开始松懈了下来.可是做事情就是需要效率和时间,慢慢地,也开始懈怠了下来. 作为pm,首先自己必须比组员先了解云笔记的各种进程,做好沟 ...

  4. svn建立主干和分支在分支上开发然后合并到主干

    我们以后打算用svn分支了,如何避免对新事物的恐惧心理呢? 领导: “我们需要慢慢适应,开始的时候我们先用一个项目练手,等熟悉了之后,再把每个项目都建上分支”

  5. [OS] 进程相关知识点

    进程概念: 1.程序在执行中 2.一个具有一定独立功能的程序在一个数据集合上的一次动态执行过程,是系统进行资源分配和调度的独立单位. 进程与程序的差别: ·进程----动态, 程序----静态 ·进程 ...

  6. 【bzoj1922】[Sdoi2010]大陆争霸 堆优化Dijkstra

    题目描述 一张n个点m条边的图,通过每条边需要一定的时间.有一些限制条件,每个限制条件形如“x保护y”,表示到达y的最短时间不能小于到达x的最短时间(即如果在其之前到达,则需要等待至xd到达).问1到 ...

  7. ARC075 F.Mirrored

    题目大意:给定D,询问有多少个数,它的翻转减去它本身等于D 题解做法很无脑,利用的是2^(L/2)的dfs,妥妥超时 于是找到了一种神奇的做法. #include <iostream> u ...

  8. python数据绘图常用方法总结

    挖坑,以后还会更新吧 做数学建模画图使用了matplotlib和numpy,这里简单总结一下常用的用法 一.数据拟合 1.np.polyfit(x, y, n) 使用n次多项式去拟合x,y散点图,返回 ...

  9. 周记【距gdoi:126天】

    这周比上周好了那么一点点……但还是有点呵呵 搞了仙人掌图(当然不是动态的……),以及一个远古算法2-sat(神奇的对称性运用,需要巨大脑洞的建边). 然后关于高考不加分竞赛被“打压”……大神们都发表了 ...

  10. [Leetcode] palindrome partition ii 回文分区

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...