Checker Challenge跳棋的挑战(n皇后问题)
Description
检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子。 列号
0 1 2 3 4 5 6
-------------------------
1 | | O | | | | |
-------------------------
2 | | | | O | | |
-------------------------
3 | | | | | | O |
-------------------------
4 | O | | | | | |
-------------------------
5 | | | O | | | |
-------------------------
6 | | | | | O | |
-------------------------
上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下: 行号 1 2 3 4 5 6 列号 2 4 6 1 3 5 这只是跳棋放置的一个解。请遍一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。 特别注意: 对于更大的N(棋盘大小N x N)你的程序应当改进得更有效。不要事先计算出所有解然后只输出,这是作弊。如果你坚持作弊,那么你登陆USACO Training的帐号将被无警告删除
Input
一个数字N (6 <= N <= 13) 表示棋盘是N x N大小的。
Output
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
Sample Input
6
Sample Output
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
HINT
题意:在n*n的棋盘上放置n个·棋子,要求每一行,每一列,包括左对角线,右对角线有且仅有一枚棋子,求有几种方法并输出前3种。
题解:翻译过来就是n皇后问题的裸题,此题的关键就是用3个数组记录该棋子的列,左右对角线棋子的状态,然后逐行搜索,用记录数组记录每行的状态就可以了。
#include<cstdio>
#include<cstring>
#include<stack>
#include<iostream>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<vector>
#define PI acos(-1.0)
using namespace std;
typedef long long ll;
int m,n,cnt,ans;
int str[];
int vis[][];
int dis[][];
int di[][]= {{-,},{,},{,-},{,}};
map<ll,ll>::iterator it;
void init()
{
cin>>m;
memset(vis,,sizeof(vis));
}
void output()
{
for(int i=;i<=m;i++)
{
printf("%d%c",str[i],i==m?'\n':' ');
}
}
void dfs(int curx)
{
if(curx>m)
{
ans++;
if(ans<=)
output();
return ;
}
for(int i=;i<=m;i++)
{
if(!vis[][i]&&!vis[][curx+i]&&!vis[][curx-i+m])//vis[0][i]表示该列是否有棋子,vis[1][i]表示该棋子的右对角线是否有棋子,vis[3][i]表示左对角线是否有棋子。
{
vis[][i]=;vis[][curx+i]=;vis[][curx-i+m]=;//状态标记
str[curx]=i;//记录数组
dfs(curx+);
vis[][i]=;vis[][curx+i]=;vis[][curx-i+m]=;//状态还原 }
}
}
int main()
{
init();
dfs();
cout<<ans<<endl;
}
Checker Challenge跳棋的挑战(n皇后问题)的更多相关文章
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)
本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...
- USACO1.5 Checker Challenge(类n皇后问题)
B - B Time Limit:1000MS Memory Limit:16000KB 64bit IO Format:%lld & %llu Description E ...
- USACO 6.5 Checker Challenge
Checker Challenge Examine the 6x6 checkerboard below and note that the six checkers are arranged on ...
- TZOJ 3522 Checker Challenge(深搜)
描述 Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so th ...
- BZOJ2292: 【POJ Challenge 】永远挑战
2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 513 Solved: 201[Submit][ ...
- 2292: 【POJ Challenge 】永远挑战
2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 553 Solved: 230[Submit][ ...
- bzoj2292【POJ Challenge 】永远挑战*
bzoj2292[POJ Challenge ]永远挑战 题意: 有向图,每条边长度为1或2,求1到n最短路.点数≤100000,边数≤1000000. 题解: 有人说spfa会T,所以我用了dijk ...
- USACO training course Checker Challenge N皇后 /// oj10125
...就是N皇后 输出前三种可能排序 输出所有可能排序的方法数 vis[0][i]为i点是否已用 vis[1][m+i]为i点副对角线是否已用 m+i 为从左至右第 m+i 条副对角线 vis[1] ...
随机推荐
- JavaScript高级程序设计读后感(一)
一.什么是JavaScript? 本质? 历史? 表单验证发展成为一门语言 局限性?
- LeetCode OJ:Add Binary(二进制相加)
Given two binary strings, return their sum (also a binary string). For example,a = "11"b = ...
- Windows系统下MySQL解压版添加到系统服务
MySQL软件版本:64位 5.7.12 1.首先配置MySQL的环境变量,在系统环境变量Path的开头添加MySQL的bin目录的路径,以“;”结束,我的路径配置如下: 2.修改MySQL根目录下的 ...
- DRF 的视图,路由和渲染器
DRF 的视图,路由和渲染器 1 视图 简单的增删改查 : ModelViewSet; 复杂的操作使用APIView 和 GenericViewSet APIView(View) class Home ...
- 让ListView中的控件失去焦点:android:descendantFocusability="blocksDescendants"
值得注意的是,ListView中的控件不能设置clickable="true",否则会无视父控件的blockDescendants. 可参考: https://segmentfau ...
- 简单实用的跨域表单POST提交
我们这里使用了iframe嵌套form表单POST提交,很简单,却能满足get|post等任何复杂情况的要求:缺点是没有返回值. 针对需要的地方加上一个iframe嵌套并塞入隐藏form表单,然后获取 ...
- 【转载】获取MAC地址方法大全
From:http://blog.csdn.net/han2814675/article/details/6223617 Windows平台下用C++代码取得机器的MAC地址并不是一件简单直接的事情. ...
- 小而实用的工具插件集锦(JQGrid,zTree)
jqgrid,JQGrid是一个在jquery基础上做的一个表格控件,看起来感觉还可以,以ajax的方式和服务器端通信 效果图: 这个小东西,多用在在工作流上面. 中文文档: http://blog. ...
- Weex入门篇——Mac 安装Weex
相关文档:http://blog.csdn.net/jasonblog/article/details/51863173 前言 相比较于React Native的“Learn once, write ...
- 洛谷P2661 信息传递
传送门 题目大意:每个人每一轮可以把消息传给另一个人,问几轮后某个人可以从人 听到自己的消息. 题解:tarjian缩点,求缩点后缩的点包含的最少的点个数. 代码: 正解 #include<io ...