Description

检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子。 列号

0   1   2   3   4   5   6
-------------------------
1 | | O | | | | |
-------------------------
2 | | | | O | | |
-------------------------
3 | | | | | | O |
-------------------------
4 | O | | | | | |
-------------------------
5 | | | O | | | |
-------------------------
6 | | | | | O | |
-------------------------

上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下: 行号 1 2 3 4 5 6 列号 2 4 6 1 3 5 这只是跳棋放置的一个解。请遍一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。 特别注意: 对于更大的N(棋盘大小N x N)你的程序应当改进得更有效。不要事先计算出所有解然后只输出,这是作弊。如果你坚持作弊,那么你登陆USACO Training的帐号将被无警告删除

Input

一个数字N (6 <= N <= 13) 表示棋盘是N x N大小的。

Output

前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

Sample Input

6

Sample Output

2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4

HINT

题意:在n*n的棋盘上放置n个·棋子,要求每一行,每一列,包括左对角线,右对角线有且仅有一枚棋子,求有几种方法并输出前3种。

题解:翻译过来就是n皇后问题的裸题,此题的关键就是用3个数组记录该棋子的列,左右对角线棋子的状态,然后逐行搜索,用记录数组记录每行的状态就可以了。

#include<cstdio>
#include<cstring>
#include<stack>
#include<iostream>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<vector>
#define PI acos(-1.0)
using namespace std;
typedef long long ll;
int m,n,cnt,ans;
int str[];
int vis[][];
int dis[][];
int di[][]= {{-,},{,},{,-},{,}};
map<ll,ll>::iterator it;
void init()
{
cin>>m;
memset(vis,,sizeof(vis));
}
void output()
{
for(int i=;i<=m;i++)
{
printf("%d%c",str[i],i==m?'\n':' ');
}
}
void dfs(int curx)
{
if(curx>m)
{
ans++;
if(ans<=)
output();
return ;
}
for(int i=;i<=m;i++)
{
if(!vis[][i]&&!vis[][curx+i]&&!vis[][curx-i+m])//vis[0][i]表示该列是否有棋子,vis[1][i]表示该棋子的右对角线是否有棋子,vis[3][i]表示左对角线是否有棋子。
{
vis[][i]=;vis[][curx+i]=;vis[][curx-i+m]=;//状态标记
str[curx]=i;//记录数组
dfs(curx+);
vis[][i]=;vis[][curx+i]=;vis[][curx-i+m]=;//状态还原 }
}
}
int main()
{
init();
dfs();
cout<<ans<<endl;
}

Checker Challenge跳棋的挑战(n皇后问题)的更多相关文章

  1. USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)

    Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...

  2. 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)

    本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...

  3. USACO1.5 Checker Challenge(类n皇后问题)

    B - B Time Limit:1000MS     Memory Limit:16000KB     64bit IO Format:%lld & %llu   Description E ...

  4. USACO 6.5 Checker Challenge

    Checker Challenge Examine the 6x6 checkerboard below and note that the six checkers are arranged on ...

  5. TZOJ 3522 Checker Challenge(深搜)

    描述 Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so th ...

  6. BZOJ2292: 【POJ Challenge 】永远挑战

    2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 513  Solved: 201[Submit][ ...

  7. 2292: 【POJ Challenge 】永远挑战

    2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 230[Submit][ ...

  8. bzoj2292【POJ Challenge 】永远挑战*

    bzoj2292[POJ Challenge ]永远挑战 题意: 有向图,每条边长度为1或2,求1到n最短路.点数≤100000,边数≤1000000. 题解: 有人说spfa会T,所以我用了dijk ...

  9. USACO training course Checker Challenge N皇后 /// oj10125

    ...就是N皇后 输出前三种可能排序 输出所有可能排序的方法数 vis[0][i]为i点是否已用 vis[1][m+i]为i点副对角线是否已用  m+i 为从左至右第 m+i 条副对角线 vis[1] ...

随机推荐

  1. ./startup.sh: /bin/sh^M: bad interpreter: 没有那个文件或目录 解决办法

    这是因为Linux上 的catalina.sh文件格式给修改了,看不出来,这样就必须通过vim编辑下,变为正常的格式,在catalina.sh的命令模式下输入  ( :set ff=unix ),接着 ...

  2. Java中最常见的十道面试题

    第一,谈谈final, finally, finalize的区别. final?修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承.因此一个类不能既被声明为 ...

  3. window.top.location

    window.top.location的作用 top, 表示是顶层页面, 因为页面之中可能嵌入了 frame 等子页面,top表示最外面一层 Html代码 <html>   <hea ...

  4. 剑指offer-第五章优化时间和空间效率(把数组排列成最小的数)

    题目:输入一个正整数数组,将所有的数,排列起来,组成一个最小的数.

  5. 剑指offer-第五章优化时间和空间效率(从1到n的整数中1出现的次数)

    题目:输入一个整数n,从1到n这n个十进制整数中1出现的次数. 思路1:对1到n中的任意一个数i对其进行求余数来判断个位是否为1,然后再求除数,判断十位是否为1.统计出1的个数.然后对1到n用一个循环 ...

  6. Android开源框架-Annotation框架(以ViewMapping注解为例)

    Annotation 分类 1 标准 Annotation 包括Override, Deprecated, SuppressWarnings,标准 Annotation 是指 Java 自带的几个 A ...

  7. LeetCode Subarray Product Less Than K

    原题链接在这里:https://leetcode.com/problems/subarray-product-less-than-k/description/ 题目: Your are given a ...

  8. fn project 运行时配置选项

    Env Variables Description Default values DB_URL The database URL to use in URL format. SeeDatabases  ...

  9. keycloak && docker安装 &&spring boot 集成使用

    1. 基础依赖 a. docker mysql b. dokcer keycloak-mysql   2. 安装     mysql (注意实际使用最好使用本地数据卷) docker run --na ...

  10. [转]javascript中基本类型和引用类型的区别分析

    基本类型和引用类型 ECMAScript包含两个不同类型的值:基本类型值和引用类型值.基本类型值指的是简单的数据段:引用类型值指由多个值构成的对象.当我们把变量赋值给一个变量时,解析器首先要做的就是确 ...