Checker Challenge跳棋的挑战(n皇后问题)
Description
检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子。 列号
0 1 2 3 4 5 6
-------------------------
1 | | O | | | | |
-------------------------
2 | | | | O | | |
-------------------------
3 | | | | | | O |
-------------------------
4 | O | | | | | |
-------------------------
5 | | | O | | | |
-------------------------
6 | | | | | O | |
-------------------------
上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下: 行号 1 2 3 4 5 6 列号 2 4 6 1 3 5 这只是跳棋放置的一个解。请遍一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。 特别注意: 对于更大的N(棋盘大小N x N)你的程序应当改进得更有效。不要事先计算出所有解然后只输出,这是作弊。如果你坚持作弊,那么你登陆USACO Training的帐号将被无警告删除
Input
一个数字N (6 <= N <= 13) 表示棋盘是N x N大小的。
Output
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
Sample Input
6
Sample Output
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
HINT
题意:在n*n的棋盘上放置n个·棋子,要求每一行,每一列,包括左对角线,右对角线有且仅有一枚棋子,求有几种方法并输出前3种。
题解:翻译过来就是n皇后问题的裸题,此题的关键就是用3个数组记录该棋子的列,左右对角线棋子的状态,然后逐行搜索,用记录数组记录每行的状态就可以了。
#include<cstdio>
#include<cstring>
#include<stack>
#include<iostream>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<vector>
#define PI acos(-1.0)
using namespace std;
typedef long long ll;
int m,n,cnt,ans;
int str[];
int vis[][];
int dis[][];
int di[][]= {{-,},{,},{,-},{,}};
map<ll,ll>::iterator it;
void init()
{
cin>>m;
memset(vis,,sizeof(vis));
}
void output()
{
for(int i=;i<=m;i++)
{
printf("%d%c",str[i],i==m?'\n':' ');
}
}
void dfs(int curx)
{
if(curx>m)
{
ans++;
if(ans<=)
output();
return ;
}
for(int i=;i<=m;i++)
{
if(!vis[][i]&&!vis[][curx+i]&&!vis[][curx-i+m])//vis[0][i]表示该列是否有棋子,vis[1][i]表示该棋子的右对角线是否有棋子,vis[3][i]表示左对角线是否有棋子。
{
vis[][i]=;vis[][curx+i]=;vis[][curx-i+m]=;//状态标记
str[curx]=i;//记录数组
dfs(curx+);
vis[][i]=;vis[][curx+i]=;vis[][curx-i+m]=;//状态还原 }
}
}
int main()
{
init();
dfs();
cout<<ans<<endl;
}
Checker Challenge跳棋的挑战(n皇后问题)的更多相关文章
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)
本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...
- USACO1.5 Checker Challenge(类n皇后问题)
B - B Time Limit:1000MS Memory Limit:16000KB 64bit IO Format:%lld & %llu Description E ...
- USACO 6.5 Checker Challenge
Checker Challenge Examine the 6x6 checkerboard below and note that the six checkers are arranged on ...
- TZOJ 3522 Checker Challenge(深搜)
描述 Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so th ...
- BZOJ2292: 【POJ Challenge 】永远挑战
2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 513 Solved: 201[Submit][ ...
- 2292: 【POJ Challenge 】永远挑战
2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 553 Solved: 230[Submit][ ...
- bzoj2292【POJ Challenge 】永远挑战*
bzoj2292[POJ Challenge ]永远挑战 题意: 有向图,每条边长度为1或2,求1到n最短路.点数≤100000,边数≤1000000. 题解: 有人说spfa会T,所以我用了dijk ...
- USACO training course Checker Challenge N皇后 /// oj10125
...就是N皇后 输出前三种可能排序 输出所有可能排序的方法数 vis[0][i]为i点是否已用 vis[1][m+i]为i点副对角线是否已用 m+i 为从左至右第 m+i 条副对角线 vis[1] ...
随机推荐
- Linux各文件及目录说明2018-03-01更新
本人wechat:YWNlODAyMzU5MTEzMTQ=. *** /etc /etc/sysconfig/network-scripts/ifcfg-eth0 /etc/sysconfig/clo ...
- Agilent RF fundamentals (11)-Vector modulator
Vector modulator 矢量调制器:调整信号的幅度和相位 http://www.21ic.com/app/test/201805/762401.htm
- 没有绝对的cc.ResolutionPolicy.FIXED_WIDTH或cc.ResolutionPolicy.FIXED_HEIGHT
以做cocos手游的经验来说,为了保证游戏在各种尺寸屏幕完美展现,没有黑边,没有非等比缩放,所以基本上适配机制都是都是cc.ResolutionPolicy.FIXED_WIDTH或cc.Resolu ...
- Linux部分常用命令学习(一)
什么是linux命令? 是一个可执行程序,就像我们所看到的位于目录/usr/bin 中的文件一样. 属于这一类的程序,可以编译成二进制文件,诸如用 C 和 C++语言写成的程序, 也可以是由脚本语言写 ...
- 【SQL】分组数据,过滤分组-group by , having
学习笔记,原文来自http://blog.csdn.net/robinjwong/article/details/24845125 创建分组 - GROUP BY 分组是在SELECT语句的GROUP ...
- 【HTML5】Canvas绘图详解-1
----->Canvas绘制基础 1,线条绘制 1-1,线条组成的图形和beginPath 案例:绘制由不同颜色的线条组成的图案 1-2,多边形的填充和closePath 案例:绘制封闭具有填充 ...
- C#网络编程(异步传输字符串) - Part.3
这篇文章我们将前进一大步,使用异步的方式来对服务端编程,以使它成为一个真正意义上的服务器:可以为多个客户端的多次请求服务.但是开始之前,我们需要解决上一节中遗留的一个问题. 消息发送时的问题 这个问题 ...
- bzoj 3612 [Heoi2014]平衡——整数划分(dp)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3612 因为力矩的缘故,变成了整数划分. 学习到了整数划分.就是那个图一样的套路.https: ...
- 第14篇 PSR-3规范(日志)
1. Specification 1.1 Basics The LoggerInterface exposes eight methods to write logs to the eight RFC ...
- 如何让公司从SVN改到Git?
把公司的SVN迁移到GitLab CE(GitLab社区版)原因主要有下面几个: 年青的新人进来,喜欢用git的越来越多 GitLab CE提供了优美的 web 界面,图形化分支结构,更直观的代码审查 ...