题目

题目链接

剑指offer:斐波那契数列

题目描述

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。

n<=39

解题思路

斐波那契数列属于经典的递归问题,对于这题的求解,我们首先要知道斐波那契数列的状态转移式,即f[n]=f[n-1]+f[n-2],且在n=1或2时,f[n]=1。

在理解基础的状态转移式后,最容易想到的便是递归调用,但很遗憾,这样算法的时间复杂度往往达不到要求。

仔细观察后可以发现,每次求解的f[n]都在之后两个f[n]的求解中起作用,因此我们可以将其保存,这样能够避免重复计算,降低算法的时间复杂度;同时,因为只在后续两个f[n]的求解中起作用,因此只需要保存两个f[n]的值即可。

具体代码

class Solution {
public:
int Fibonacci(int n) {
if (n < 0)
return -1;
if (n <= 1)
return n;
int sum = 1; // f[n-1]
int pre = 0; // f[n-2]
for (int i = 2; i <= n; ++i) {
// 更新f[n-1]和f[n-2]
sum = sum + pre;
pre = sum - pre;
}
return sum;
}
};

剑指offer:斐波那契数列的更多相关文章

  1. 剑指Offer 斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 思路: 不考虑递归 用递推的思路 AC代码: class Solution { public ...

  2. 剑指Offer——斐波那契数列

    题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39 分析: 递归解法肯定相当耗时. 因为当n=4时,程序是这样子递归运算的:Fibonacci( ...

  3. 用js刷剑指offer(斐波那契数列)

    牛客网链接 下面介绍一下什么是斐波那契数列 js代码 知道了通项公式,那代码就非常简单了 function Fibonacci(n) { // write code here let pre = 1 ...

  4. [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖

    跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...

  5. 剑指offer7: 斐波那契数列第n项(从0开始,第0项为0)

    1. 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 2. 思路和方法 斐波那契数列(Fibonacci sequen ...

  6. 剑指offer--4.斐波那契数列

    int最大范围(有符号情况下,从第0项0开始)能取到第46项1836311903,47项溢出 时间限制:1秒 空间限制:32768K 热度指数:473928 题目描述 大家都知道斐波那契数列,现在要求 ...

  7. 剑指Offer-7.斐波那契数列(C++/Java)

    题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 分析: 斐波那契数列是0,1,1,2,3,5,8,13...也就是当前 ...

  8. 剑指Offer07 斐波那契数列

    /************************************************************************* > File Name: 07_Fibona ...

  9. [剑指Offer]10-斐波那契数列(循环)-Java

    题解 使用循环,时间复杂度O(n). 相关 跳台阶:f(n)=f(n-1)+f(n-2) 变态跳台阶:f(n)=2*f(n-1) 矩形覆盖:f(n)=f(n-1)+f(n-2) 全部用循环代替递归,使 ...

  10. 剑指offer_斐波那契数列

    package solution; public class Fibonacci { /* * f(n) = f(n-1) + f(n-2) n>1 * f(0) = 0 * f(1) = 1 ...

随机推荐

  1. ATK-DataPortal 设计框架(一)

    无论是简单的还是复杂的框架,总需要一个开始的原点,ATK-DataPortal中包含了所有基础类的定义. 一.业务框架基础类 1.BusinessBase:所有业务类的根类,要使用ATK库的类,必需继 ...

  2. Xshell中使用FTP/SFTP工具下载文件

    (1)sftp host_ip,输入用户名/密码 (2)通过cd命令找到远程服务器要拷贝的文件: 通过lcd命令指定本地保存地址. (3)通过get filename拷贝文件 (4)在本地查看,已经可 ...

  3. java各种业务解决方案总结

    最近有点时间,突然感慨良多,感觉辛苦工作这么久什么都没有,总结了以前的工作,将接触的主要工具列出来,希望给大家解决问题做参考.相关工具都是实践检验过的 1.数据库 (1).内存数据库 redis (2 ...

  4. Vue--- 使用vuex使用流程 1.0

    Vuex 1.安装vuex npm install  -save vuex 2. 引入 创建store文件夹目录 创建 vuex     指挥公共目录    store['state','action ...

  5. js对URL的相关操作集锦

    1.location.href..... (1)self.loction.href="/url" window.location.href="/url"    ...

  6. 【TOJ 3369】CD(二分)

    描述 Jack and Jill have decided to sell some of their Compact Discs, while they still have some value. ...

  7. 【PTA 天梯赛】L2-026. 小字辈(广搜+邻接表)

    本题给定一个庞大家族的家谱,要请你给出最小一辈的名单. 输入格式: 输入在第一行给出家族人口总数 N(不超过 100 000 的正整数) —— 简单起见,我们把家族成员从 1 到 N 编号.随后第二行 ...

  8. jquery如何获取对应表单元素?

    问题描述:我页面中有这样多个表单,我都是这个定义的,当我点击确定按钮时,此时能够获得相对应的表单对象,我该怎么获取到他的两个值呢? 解决方案: 页面元素 <form id="form1 ...

  9. Python 2.6.6升级到Python2.7.15

    最近在使用Python处理MySQL数据库相关问题时,需要用到Python2.7.5及以上版本,而centos6.5等版本操作系统默认自带的版本为2.6.6,因此需要对python进行升级. Pyth ...

  10. JAVA 基础编程练习题

    1 [程序 1 不死神兔] 题目:古典问题:有一对兔子,从出生后第 3 个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子对数为多少?程序分析: 兔子的规 ...