图解Transformer

前言

Attention这种机制最开始应用于机器翻译的任务中,并且取得了巨大的成就,因而在最近的深度学习模型中受到了大量的关注。在在这个基础上,我们提出一种完全基于Attention机制来加速深度学习训练过程的算法模型-Transformer。事实证明Transformer结构在特定任务上已经优于了谷歌的神经网络机器翻译模型。但是,Transformer最大的优势在于其在并行化处理上做出的贡献。谷歌也在利用Transformer的并行化方式来营销自己的云TPU。所以,现在让我们一步一步剖析Transformer的神秘面纱,让我看看他是怎么一步一步训练的。

Transformer在Goole的一篇论文Attention is All You Need被提出,为了方便实现调用Transformer Google还开源了一个第三方库,基于TensorFlow的Tensor2Tensor,一个NLP的社区研究者贡献了一个Torch版本的支持:guide annotating the paper with PyTorch implementation。这里,我想用一些方便理解的方式来一步一步解释Transformer的训练过程,这样即便你没有很深的深度学习知识你也能大概明白其中的原理。

查看全文:https://blog.csdn.net/qq_41664845/article/details/84969266

论文地址:https://arxiv.org/abs/1706.03762

图解Transformer的更多相关文章

  1. 【译】图解Transformer

    目录 从宏观上看Transformer 把张量画出来 开始编码! 从宏观上看自注意力 自注意力的细节 自注意力的矩阵计算 "多头"自注意力 用位置编码表示序列的顺序 残差 解码器 ...

  2. 【转载】图解Transformer(完整版)!

    在学习深度学习过程中很多讲的不够细致,这个讲的真的是透彻了,转载过来的,希望更多人看到(转自-张贤同学-公众号). 前言 本文翻译自 http://jalammar.github.io/illustr ...

  3. 图解BERT(NLP中的迁移学习)

    目录 一.例子:句子分类 二.模型架构 模型的输入 模型的输出 三.与卷积网络并行 四.嵌入表示的新时代 回顾一下词嵌入 ELMo: 语境的重要性 五.ULM-FiT:搞懂NLP中的迁移学习 六.Tr ...

  4. Transformer各层网络结构详解!面试必备!(附代码实现)

    1. 什么是Transformer <Attention Is All You Need>是一篇Google提出的将Attention思想发挥到极致的论文.这篇论文中提出一个全新的模型,叫 ...

  5. Transformer详解

    0 简述 Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-attention机制实现快速并行. 并且Transformer可以增加到非常深的深度,充分发掘DNN模型的特性,提 ...

  6. NMT 机器翻译

    本文近期学习NMT相关知识,学习大佬资料,汇总便于后期复习用,有问题,欢迎斧正. 目录 RNN Seq2Seq Attention Seq2Seq + Attention Transformer Tr ...

  7. 搜索系统核心技术概述【1.5w字长文】

    前排提示:本文为综述性文章,梳理搜索相关技术,如寻求前沿应用可简读或略过 搜索引擎介绍 搜索引擎(Search Engine),狭义来讲是基于软件技术开发的互联网数据查询系统,用户通过搜索引擎查询所需 ...

  8. 用Python手把手教你搭一个Transformer!

    来源商业新知网,原标题:百闻不如一码!手把手教你用Python搭一个Transformer 与基于RNN的方法相比,Transformer 不需要循环,主要是由Attention 机制组成,因而可以充 ...

  9. BERT模型图解

    转载于 腾讯Bugly 发表于 腾讯Bugly的专栏 原文链接:https://cloud.tencent.com/developer/article/1389555 本文首先介绍BERT模型要做什么 ...

随机推荐

  1. U盘安装centOS和下载地址

    使用到的材料: 1.centos-6.2 i386 minimal 下载地址:http://mirrors.163.com/centos/6.2/isos/i386/CentOS-6.2-i386-m ...

  2. linux 学习(三) php相关

    五 php相关 配置文件位置 /etc/apache2/apache2.conf 1禁止列举目录 sudo vi /etc/apache2/sites-enabled/000-default 删除Op ...

  3. js动画之requestAnimationFrame

    1.setTimeout和setInterval 在讲setTimeout和setInterval之前,先讲一下异步执行的运行机制.(同步执行也是如此,因为它可以被视为没有异步任务的异步执行.) (1 ...

  4. Spring-boot官方案例分析之data-jpa

    Spring-boot官方案例分析之data-jpa package sample.data.jpa; import org.junit.Before; import org.junit.Test; ...

  5. [Windows]ping itsafe&环境变量

    (1)when you ping a computer from itsafe,the ping command should return the local IP address. (2)wind ...

  6. 对UIImageView+WebCache的封装

    UIImageView+SDWebImage.h #import <UIKit/UIKit.h> typedef void(^DownloadImageSuccessBlock)(UIIm ...

  7. 分布式id生成

    2016年08月09日 14:15:21 yuanyuanispeak 阅读数:318 编辑 一.需求缘起 几乎所有的业务系统,都有生成一个记录标识的需求,例如: (1)消息标识:message-id ...

  8. N个数求和

    题目: 本题的要求很简单,就是求N个数字的和.麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式. 输入格式: 输入第一行给出一个正整数N(≤100).随后一行按格式a ...

  9. c++后台开发 准备材料

    后台开发知识点 面面俱到很难,一个领域钻研的很深也很难.我认识的大神里有把C++语言吃的非常透的,也有实验室就是搞分布式的,拿offer都非常轻松. 博客(C++后台/基础架构) http://www ...

  10. 【TOJ 3812】Find the Lost Sock(异或)

    描述 Alice bought a lot of pairs of socks yesterday. But when she went home, she found that she has lo ...