【bzoj2500】幸福的道路 树形dp+单调队列
Description
小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光.
他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图.
他们不愿枯燥的每天从同一个地方开始他们的锻炼,所以他们准备给起点标号后顺序地从每个起点开始(第一天从起点一开始,第二天从起点二开始……). 而且他们给每条道路定上一个幸福的值.很显然他们每次出发都想走幸福值和最长的路线(即从起点到树上的某一点路径中最长的一条).
他们不愿再经历之前的大起大落,所以决定连续几天的幸福值波动不能超过M(即一段连续的区间并且区间的最大值最小值之差不超过M).他们想知道要是这样的话他们最多能连续锻炼多少天(hint:不一定从第一天一直开始连续锻炼)?
现在,他们把这个艰巨的任务交给你了!
Input
第一行包含两个整数N, M(M<=10^9).
第二至第N行,每行两个数字Fi , Di, 第i行表示第i个节点的父亲是Fi,且道路的幸福值是Di.
Output
最长的连续锻炼天数
Sample Input
3 2
1 1
1 3
Sample Output
3
数据范围:
50%的数据N<=1000
80%的数据N<=100 000
100%的数据N<=1000 000
Sol
第一问,每个点能到达的最长链无非就是要么往子树走,要么往父亲走再往上走,那么我们用\(u[i]\)和\(d[i]\)分别表示向上走和向下走的最长链,向下走的直接dfs即可,向上走的我们更新x的儿子的dp值的时候,我们记录x儿子中\(d[i]\)的最大值和次大值,如果这个儿子不是最大值,那么用最大值更新,否则用次大值更新。记得x儿子的初值是\(u[x]\)。
第二问我们开俩单调队列,维护递减的最大值和递增的最小值,加入一个元素的时候按照正常操作更新队列,之后我们要从队首弹出元素直到两者之差小于等于m,弹出队列的过程就是哪边更靠左,就把哪边弹出,然后维护一个pos表示答案能够延伸到的左端点,每次弹出的时候更新为\(q[l1/l2]+1\)。这样经过若干次迭代之后就能找到合法的最靠左的pos,然后用\(i-pos+1\)更新答案。
当然这题的范围是允许st表的,偷懒写st表也可以(模拟赛内存砍了一半所以写不了qwq)
Code
#include <bits/stdc++.h>
#define ll long long
using namespace std;
struct nod{int t;ll v;nod(int t=0,ll v=0):t(t),v(v){}};
vector<nod>e[1000005];
int n,x,q1[1000005],q2[1000005],l1=1,l2=1,r1,r2,g=1,ans;
ll m,y,u[1000005],d[1000005],a[1000005];
void dfs1(int x,int F){for(int i=0,t;i<e[x].size();i++)if((t=e[x][i].t)!=F)dfs1(t,x),d[x]=max(d[x],d[t]+e[x][i].v);}
void dfs2(int x,int F)
{
ll fm=0,sm=0;
for(int i=0,t;i<e[x].size();i++) if((t=e[x][i].t)!=F)
{
if(d[t]+e[x][i].v>fm) sm=fm,fm=d[t]+e[x][i].v;
else sm=max(sm,d[t]+e[x][i].v);
u[t]=u[x]+e[x][i].v;
}
for(int i=0,t;i<e[x].size();i++) if((t=e[x][i].t)!=F)
{
if(d[t]+e[x][i].v==fm) u[t]=max(u[t],sm+e[x][i].v);
else u[t]=max(u[t],fm+e[x][i].v);
dfs2(t,x);
}
}
int main()
{
scanf("%d%lld",&n,&m);
for(int i=2;i<=n;i++) scanf("%d%lld",&x,&y),e[i].push_back(nod(x,y)),e[x].push_back(nod(i,y));
dfs1(1,0);dfs2(1,0);
for(int i=1;i<=n;i++) a[i]=max(u[i],d[i]);
for(int i=1;i<=n;i++)
{
while(l1<=r1&&a[i]<=a[q1[r1]]) r1--;
while(l2<=r2&&a[i]>=a[q2[r2]]) r2--;
q1[++r1]=i;q2[++r2]=i;
while(a[q2[l2]]-a[q1[l1]]>m) if(q2[l2]<q1[l1]) g=q2[l2]+1,l2++;else g=q1[l1]+1,l1++;
ans=max(ans,i-g+1);
}
printf("%d\n",ans);
}
【bzoj2500】幸福的道路 树形dp+单调队列的更多相关文章
- bzoj2500幸福的道路 树形dp+单调队列
2500: 幸福的道路 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 434 Solved: 170[Submit][Status][Discuss ...
- (noip模拟二十一)【BZOJ2500】幸福的道路-树形DP+单调队列
Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...
- [BZOJ 2500]幸福的道路 树形dp+单调队列+二分答案
考试的时候打了个树链剖分,而且还审错题了,以为是每天找所有点的最长路,原来是每天起点的树上最长路径再搞事情.. 先用dfs处理出来每个节点以他为根的子树的最长链和次长链.(后面会用到) 然后用类似dp ...
- bzoj2500: 幸福的道路(树形dp+单调队列)
好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...
- 【bzoj2500】幸福的道路 树形dp+倍增RMQ+二分
原文地址:http://www.cnblogs.com/GXZlegend/p/6825389.html 题目描述 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一 ...
- 【BZOJ2500】幸福的道路 树形DP+RMQ+双指针法
[BZOJ2500]幸福的道路 Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的 ...
- Codeforces 980F Cactus to Tree 仙人掌 Tarjan 树形dp 单调队列
原文链接https://www.cnblogs.com/zhouzhendong/p/CF980F.html 题目传送门 - CF980F 题意 给定一个 $n$ 个节点 $m$ 条长为 $1$ 的边 ...
- HDU 4123 Bob’s Race 树形dp+单调队列
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4123 Time Limit: 5000/2000 MS (Java/Others) Memory L ...
- POJ - 3162 Walking Race 树形dp 单调队列
POJ - 3162Walking Race 题目大意:有n个训练点,第i天就选择第i个训练点为起点跑到最远距离的点,然后连续的几天里如果最远距离的最大值和最小值的差距不超过m就可以作为观测区间,问这 ...
随机推荐
- Linux - 对文件和目录的权限管理
对文件的权限管理 ls -l,也可以用 ll 命令查看文件权限的相关信息 第一列“-rw-r--r--.”为权限信息,权限信息的最后一个点表示为在安全环境下创建的 第二列“1”为硬链接数,第三列“ro ...
- Hibernate XXX.hbm.xml 里的class标签的 schema 属性解释
转自:https://blog.csdn.net/mym43210/article/details/30230173 1 <?xml version="1.0" encodi ...
- JSP页面生成验证码功能
<%@ page language="java" contentType="text/html; charset=UTF-8" import=" ...
- 【知识碎片】python 篇
领域:运维 网站 游戏 搜索 嵌入式 C/S软件 Openstack二次开发 绿色版:Portable Python 面向对象.解释型动态语言 env python 切换版也好使,自己寻找系统中pyt ...
- KinderEditor编辑器 在Asp.Net中的使用
KinderEditor编辑器的使用 分为简单的三步. 1:添加引用部分 <script src="/KinderEditor/kindeditor-min.js">& ...
- Linux ALSA声卡驱动之一:ALS…
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢! 一. 概述 ALSA是Advanced Linux Sound Architecture ...
- 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归
Gradient Descent for Multiple Variables [1]多变量线性模型 代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...
- mac配置git mergetool为p4merge(2013笔记整理)
既有环境: 1)下载安装p4merge 2)安装git 下面是配置p4merge为git mergetool的步骤 1. /usr/local/bin下创建extMerge文件: $ cat > ...
- PHP 商城无限极分类
无限极分类,用的是递归,在外部调用fen()方法即可 index是刚开始寻找的顶级分类,suo是为了在前端展示的时候缩进 ,$suo=){ 一个数组用来返回的 $t=[]; 这是查询数据库的所有内容 ...
- 【原创】linux signal处理中的几个问题(suse下莫名其妙死锁的处理)
我在CSDN专栏写过的,老帖子最近发现在腾讯的CVM上,服务器总是平凡的死锁后查明真像为 当你发生sig 11的异常时,会进入处理函数 signalHandler同时此时生成相应的dump file时 ...